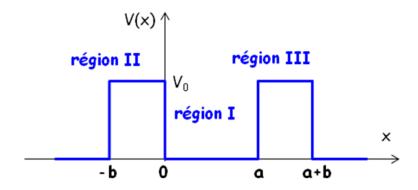
Série 3

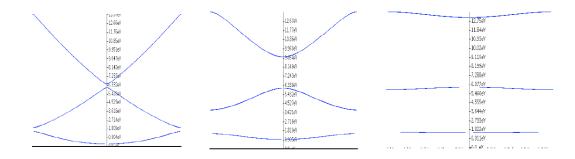
<u>Exercice 1:</u> On se propose d'étudier le comportement d un électron soumis au potentiel représenté ci-dessous :



- 1) Donner les solutions de l'équation de Schrödinger dans les régions I et II (on note $\alpha^2=2mE/\hbar^2$ et $\beta^2=2m(E-V_0)/\hbar^2$). A l'aide du théorème de Bloch, exprimer la fonction d'onde dans la région III en fonction de celle dans la région II. Préciser les valeurs que peut prendre le vecteur d'onde k (on utilisera les conditions aux limites périodiques et on note L la longueur de la chaîne).
- 2) Appliquer les conditions aux limites en x=0 et x=a et en déduire la relation de dispersion (sous la forme d'un déterminant). Ce déterminant peut s'écrire:

$$\cos[k(a+b)] = \cos(\alpha a) \cdot \cos(\beta b) - \frac{\alpha^2 + \beta^2}{2\alpha\beta} \sin(\alpha a) \cdot \sin(\beta b)$$

- 3) Que devient cette relation pour : (i) $V_0 \rightarrow 0$ et (ii) E $\lt \lt V_0$ et qb $\lt \lt 1$ (β = iq).
- 4) Tracer l'allure du membre de droite en fonction de α a.
- 5) En déduire l'existence de bandes permises et interdites.
- 6) Les schémas ci-dessous représentent l'évolution des relations de dispersion pour V_0 croissant (10, 100, et 1000eV, a+b=5 A° , b=0.1 A°): commenter cette évolution. Retrouver la largeur de la première bande interdite pour V_0 =100eV



Série 3 Solution

Exercice:

1) les solutions de l'équation de Schrödinger.

Dans la zone I... l'équation de Schrödinger s'écrit $\frac{d^2\psi}{dx^2} + \frac{2mE}{\hbar^2}\psi = 0$

Posons
$$\alpha^2 = 2mE/\hbar^2$$

$$\frac{d^2\psi_2(x)}{dx^2} - \alpha^2\psi_2(x) = 0$$

La solution est : $\psi_I(x) = Ae^{i\alpha x} + Be^{-i\alpha x}$

Dans les zones II, III... l'équation de Schrödinger s'écrit $\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2}(E-V)\psi = 0$ posons $\beta^2 = 2m(E-V_0)/\hbar^2$

$$\frac{d^2\psi(x)}{dx^2} + \beta^2\psi(x) = 0$$

La solution dans la zone II est : $\psi_{II}(x) = Ce^{i\beta x} + De^{-i\beta x}$

Remarque:

Si
$$E > Vo$$
 alors β est reel

Si 0 < E < Vo alors
$$\beta$$
 = iq est imaginaire pur, alors on aura $q=\sqrt{2m(V_0-E)\,/\,\hbar^2}$

Le cristal a une longueur L = N(a+b). Le théorème de Bloch ainsi que les conditions périodiques aussi appelées conditions de Born von Kermann nous permettent de préciser les valeurs discrètes possible du vecteur d'onde k, soit:

$$\left. \begin{array}{l} \psi \left(x + N(a+b) \right) = \psi \left(x \right) \\ \psi \left(x \right) = u_k(x) e^{ikx} \\ u_k(x) = u_k(x + (a+b)) \end{array} \right\} \Rightarrow e^{ikN(a+b)} = 1 \Rightarrow k = \frac{2\pi}{L} m \quad (m \in \mathbb{Z})$$

Exprimons la fonction d'onde dans la région III en fonction de celle dans la région II à l'aide du théorème de Bloch

Dans la région III a < x < (a+b)

$$\psi_{III}(x) = u(x)e^{ikx}$$

Or
$$\psi_{II}(x-(a+b)) = u_k(x-(a+b))e^{ik(x-(a+b))}$$

= $u_k(x)e^{ikx}e^{-ik(a+b)}$
= $\psi_{III}(x)e^{-ik(a+b)}$

Donc
$$\psi_{III}(x) = e^{ik(a+b)} \psi_{II}(x-(a+b))$$

2) La fonction d'onde ainsi que sa dérivée doivent être continues en x = 0 et en x = a. Avec la connaissance de la forme de la fonction d'onde dans la région III nous obtenons le système suivant qui est homogène en (A, B, C, D):

en x = 0

$$\psi_I(0) = \psi_{II}(0) \implies A + B = C + D$$

$$\dot{\psi}_I(0) = \dot{\psi}_{II}(0) \implies \alpha(A - B) = \beta(C - D)$$

en x = a

$$\psi_{I}(a) = \psi_{III}(a) \implies Ae^{i\alpha a} + Be^{-i\alpha a} = e^{ik(a+b)} \left[Ce^{-i\beta b} + De^{i\beta b} \right]$$
$$\dot{\psi}_{I}(a) = \dot{\psi}_{III}(a) \implies \alpha (Ae^{i\alpha a} - Be^{-i\alpha a}) = e^{ik(a+b)} \beta \left[Ce^{-i\beta b} - De^{i\beta b} \right]$$

Donc on a:

$$A + B - C - D = 0$$

$$A\alpha - B\alpha - C\beta + D\beta = 0$$

$$Ae^{i\alpha a} + Be^{-i\alpha a} - Ce^{ik(a+b)}e^{-i\beta b} - De^{ik(a+b)}e^{i\beta b} = 0$$

$$A\alpha e^{i\alpha a} - B\alpha e^{-i\alpha a} - C\beta e^{ik(a+b)}e^{-i\beta b} + D\beta e^{ik(a+b)}e^{i\beta b} = 0$$

Ce qui peut s'écrire sous la forme :

$$\begin{pmatrix} 1 & 1 & -1 & -1 \\ \alpha & -\alpha & -\beta & +\beta \\ e^{i\alpha a} & e^{-i\alpha a} & -e^{ik(a+b)}e^{-i\beta b} & -e^{ik(a+b)}e^{i\beta b} \\ \alpha e^{i\alpha a} & -\alpha e^{-i\alpha a} & -\beta e^{ik(a+b)}e^{-i\beta b} & +\beta e^{ik(a+b)}e^{i\beta b} \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

La fonction d'onde ne pouvant être nulle partout cette homogénéité implique que le déterminant de ce système doit être nul, soit :

$$\cos[k(a+b)] = \cos(\alpha a) \cdot \cos(\beta b) - \frac{\alpha^2 + \beta^2}{2\alpha\beta} \sin(\alpha a) \cdot \sin(\beta b)$$

- 3) (i) Dans le cas ou $V_0 \to 0$ ou b=0, nous retrouvons $k = \alpha$ soit $E = \frac{\hbar^2 k^2}{2m}$ et la fonction d'onde d'une particule libre : $\psi(x) = Ae^{ikx} + Be^{-ikx}$
- (ii) Dans le cas ou $0 \le E \le V_0 \implies \beta = iq$ est imaginaire pur, nous trouvons:

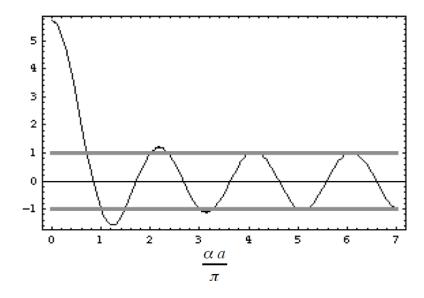
$$\cos[k(a+b)] = \cos(\alpha a) \cdot \cosh(qb) + \frac{q^2 - \alpha^2}{2\alpha q} \sin(\alpha a) \cdot \sinh(qb)$$

Si E \ll V₀ et qb \ll 1 (β = iq). La condition supplémentaire **qb** \ll 1 est imposée, elle correspond au cas particulier des niveaux de hautes énergies dans un cristal $q \ll$ 1 et au cas des puits larges **b** \ll **a**, c'est à-dire à des niveaux d'énergie proche du haut des puits, $V - E \ll V$. Nous aurons les approximations suivantes:

$$\begin{vmatrix}
\cosh(qb) \approx 1 \\
\sinh(qb) \approx qb \\
q^2 - \alpha^2 = \frac{2mV}{\hbar}
\end{vmatrix} \Rightarrow \cos[ka] = \cos(\alpha a) + ab \frac{mV}{\hbar} \frac{\sin(\alpha a)}{\alpha a}(*)$$

D'où l'expression de $P = ab \frac{mV}{\hbar}$

4) Traçons l'allure du membre de droite en fonction de αa . $y = \cos(\alpha a) + P \frac{\sin(\alpha a)}{\alpha a}$ avec $P = \frac{3\pi}{2}$ nous voyons apparaître des bandes d'énergie autorisées limitées par les deux lignes horizontales grisées en +1 et -1.



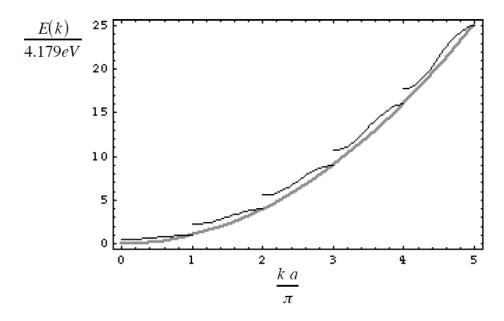
5) En déduire l'existence de bandes permises et interdites.

Compte tenu de l'égalité du second membre avec le cosinus du premier membre, il apparaît une alternance de zones où valeur de $\frac{\alpha a}{\pi}$ est permise et des zones où celle-ci est interdite car ne pouvant constituée une solution à l'équation (*). La définition de α amène à une conclusion identique pour ce qui concerne l'énergie de la particule. Celle-ci se répartit en bande d'énergie permise et en bande d'énergie interdite. Les bandes permises forment un quasi continuum de niveau d'énergie pour les raisons évoquées dans le TD2

Chaque fois que $\alpha a = m\pi$ (avec $m \in \mathbb{Z}$) nous retrouvons le cas de la particule libre.

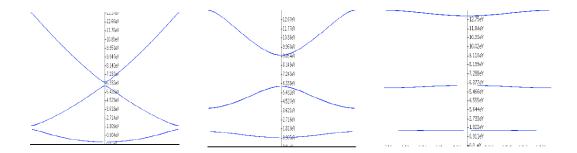
Ainsi pour $P = \frac{3\pi}{2}$ nous avons les bandes d'énergie successives suivantes :

$$\frac{\alpha a}{\pi} \in [0.71635, 1[\cup [1.5, 2[\cup [2.36039, 3[\cup [3.27353, 4[\cup [4.21753, 5[$$



La courbe en grisée correspond à la particule libre

6) Les schémas ci-dessous représentent l'évolution des relations de dispersion pour V_0 croissant (10, 100, et 1000eV, a+b= $5A^\circ$, b=0.1 A°): commenter cette évolution. Retrouver la largeur de la première bande interdite pour V_0 =100eV



Pour les sommets des bande, nous retrouvons le cas de la particule libre.

La remarque énoncée ci-dessus : si k est une solution alors $\pm k + \frac{2\pi m}{a}$ $où m \in \mathbb{Z}$ permet de compléter le diagramme de dispersion en symétrisant et périodisant l'esquisse ci-dessus.

L'annulation de la dérivée en de la fonction E(k) au abcisses $k\pi/a$ = entier n'a pas été démontré mais le sera au cours du calcul du paragraphe 3.

Le nombre d'états par bande est donné par:

$$-\pi \le ka \le \pi \implies -\pi \le \frac{2\pi m}{N} \le \pi \implies -\frac{N}{2} \le m \le \frac{N}{2}$$
 soit N valeurs possibles donc 2N électrons par motif cristallin.

Pour $P \to \infty$ nous devons avoir $\sin(\alpha(a+b)) \to 0$ et donc $\alpha a = m\pi$ (avec $m \in \mathbb{Z}$), les puits deviennent infiniment profonds, indépendants les uns des autres avec leurs niveaux d'énergie discrets.

6°) Application numérique:

Énergie des cinq premières bandes en eV:

$$\{2.14432,4.17859\}, \{9.40182,16.7143\}, \{23.2808,37.6073\}, \{44.7779,66.8574\}, \{74.3271,104.465\}$$

Pour la première bande le bas correspond à une énergie de 2.14432 eV.

Pour la première bande le haut correspond à une énergie de 4.17859 eV.

Pour la deuxième bande le bas correspond à une énergie de 9.40182 eV.

La largeur de la première bande interdite est donc de 5.22323 eV.

7°) La différentiation de (3) par rapport à k conduit à l'expression:

$$\sin[ka] = \left(\sin(\alpha a) - P\frac{d}{d(\alpha a)} \left(\frac{\sin(\alpha a)}{\alpha a}\right)\right) \frac{d\alpha}{dk} = F_P(\alpha a) \frac{d\alpha}{dk}$$

Chaque fois que $\sin(ka) = 0$, c'est-à-dire en bas et en sommet de bande, $\frac{d\alpha}{dk} = 0$ car $F_P(\alpha a) \neq 0$. Par suite les bas et les sommets de bandes ont des formes paraboliques.

En poursuivant la dérivation à l'ordre suivant, pour le sommet et le bas de bande nous obtenons :

$$\frac{d^2\alpha}{dk^2} = \frac{\cos(ka)}{F_{\rm R}(ka)}$$

Application au haut de la première bande.

Nous avons
$$\alpha = k = \frac{\pi}{a}$$
, par suite $F_P(\alpha a) = \frac{P}{a}$ et $\frac{d^2\alpha}{dk^2} = -a\frac{\pi}{P}$

Pour l'électron libre nous avons $E=\frac{\hbar^2 k^2}{2m}$, nous appellerons masse effective $m^*=\frac{\hbar^2}{\partial^2 E/k^2}$ qui redonne bien la masse de l'électron lorsqu'il est libre.

En revenant à la définition de
$$E = \frac{\hbar^2 \alpha^2}{2m}$$
 nous obtenons $\frac{d^2 E}{dk^2} = \frac{\hbar^2}{m} \left(\left(\frac{d\alpha}{dk} \right)^2 + \alpha \frac{d^2 \alpha}{dk^2} \right)$

En haut de la première bande $\frac{d^2E}{dk^2}=-\frac{\hbar^2\pi^2}{mP}$, la masse effective est alors: $m^*=-\frac{2}{3\pi}m=-0.212m$

AUTRES COMMENTAIRES.

Les fonctions d'onde des électrons dans le cristal sont de la forme $u_a(x)e^{ikx}$ où $u_a(x)$ $\square possède la périodicité du réseau.. À l'échelle macroscopique nous ne retiendrons que le terme en <math>e^{ikx}$; l'électron ressemble à un électron libre: onde plane de vecteur d'onde k défini modulo $\frac{2\pi}{a}$

Néanmoins la relation El Killest modifiée et nous voyons apparaître des bandes d'énergie permises et interdites.

Le bas et le haut de ces bandes correspondent au voisinage de $ka=P\pi$ \square et sont décrites par l'équation E_b $(ou\ E_h)=E_{b_0}$ $(ou\ E_{h_0})+\frac{\hbar^2(k-P\pi)^2}{2m^*}$ où E_b $(ou\ E_h)$ sont les énergies en bas (ou en haut) de celles ci.

L'électron se comporte comme s'il avait une énergie potentielle E_b (ou E_h), un quantité de mouvement $\hbar(k-P\pi)$, une masse m* (pouvant être négative), et une énergie cinétique

$$\frac{P^2}{2m^*} = \frac{\hbar^2 (k - p\pi)^2}{2m^*}$$