Produit scalaire: exercices

Les réponses aux questions sont disponibles à la fin du document

Le plan est muni d'un repère orthonormal.

Exercice 1:

On considère les vecteurs \overrightarrow{u} et \overrightarrow{v} tels que : $\|\overrightarrow{u}\| = 2$, $\|\overrightarrow{v}\| = 3$ et $\overrightarrow{u} \cdot \overrightarrow{v} = 1$. Calculer :

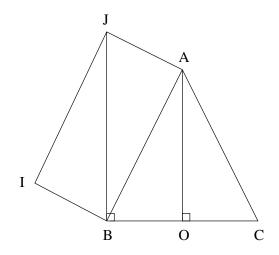
- 1) $(2\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} \overrightarrow{v})$
- 2) $(\overrightarrow{u} + 2\overrightarrow{v})^2$
- 3) $(-3\overrightarrow{u} + \overrightarrow{v})^2$
- 4) $(\overrightarrow{u} \overrightarrow{v})^2 (\overrightarrow{u} + \overrightarrow{v})^2$

Exercice 2:

Dans la figure ci-dessous : ABC est un triangle isocèle en A, AIBJ est un parallélogramme et BC = 4.

Calculer les produits scalaires suivants :

- 1) $\overrightarrow{BC} \cdot \overrightarrow{BA}$
- 2) $\overrightarrow{BC} \cdot \overrightarrow{JC}$
- 3) $\overrightarrow{BC} \cdot \overrightarrow{AJ}$
- 4) $\overrightarrow{BC} \cdot \overrightarrow{IA}$
- 5) $\overrightarrow{BO} \cdot \overrightarrow{BI}$
- 6) $\overrightarrow{BC} \cdot \overrightarrow{CI}$

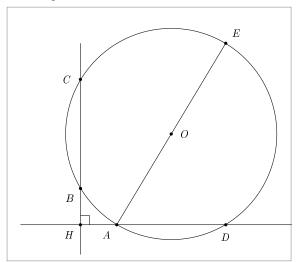


Exercice 3:

Soit C un cercle de centre O et A, B et C trois points distincts de C.

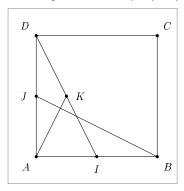
On note H le projeté orthogonal de A sur la droite (BC), D l'intersection entre la hauteur (AH) et le cercle C et E le point du cercle diamètralement opposé à A.

Montrer que $\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AC} \cdot \overrightarrow{AD} = \overrightarrow{AE} \cdot \overrightarrow{AH}$.



Exercice 4:

Soit ABCD un carré, I le milieu de [AB], J le milieu de [AD] et K le milieu de [ID]. Montrer que les droites (AK) et (BJ) sont perpendiculaires.



Exercice 5:

On considère les points $A \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $B \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

- a) Déterminer une équation de la tangente en B au cercle C de centre A passant par B.
- b) Déterminer une équation du cercle C.

Réponses exercice 1 :

On développe et on utilise que $\overrightarrow{u}^2 = \|\overrightarrow{u}\|^2 = 4$, $\overrightarrow{v}^2 = \|\overrightarrow{v}\|^2 = 9$ et $\overrightarrow{u} \cdot \overrightarrow{v} = 1$.

1)
$$(2\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = -2$$

$$2) (\overrightarrow{u} + 2\overrightarrow{v})^2 = 44$$

3)
$$(-3\vec{u} + \vec{v})^2 = 39$$

4)
$$(\overrightarrow{u} - \overrightarrow{v})^2 - (\overrightarrow{u} + \overrightarrow{v})^2 = -4$$

Réponses exercice 2 :

1)
$$\overrightarrow{BC} \cdot \overrightarrow{BA} = \overrightarrow{BC} \cdot \overrightarrow{BQ} = 4 \times 2 = 8$$

2)
$$\overrightarrow{BC} \cdot \overrightarrow{JC} = \overrightarrow{BC} \cdot \overrightarrow{BC} = 4^2 = 16$$

3)
$$\overrightarrow{BC} \cdot \overrightarrow{AJ} = \overrightarrow{BC} \cdot \overrightarrow{OB} = -4 \times 2 = -8$$

4)
$$\overrightarrow{BC} \cdot \overrightarrow{IA} = \overrightarrow{BC} \cdot \left(\overrightarrow{IB} + \overrightarrow{BA}\right) = \overrightarrow{BC} \cdot \overrightarrow{IB} + \overrightarrow{BC} \cdot \overrightarrow{BA} = \overrightarrow{BC} \cdot \overrightarrow{JA} + 4 \times 2 = 4 \times 2 + 8 = 16$$

5)
$$\overrightarrow{BO} \cdot \overrightarrow{BI} = \overrightarrow{BO} \cdot \overrightarrow{AJ} = \overrightarrow{BO} \cdot \overrightarrow{OB} = -2^2 = -4$$

6)
$$\overrightarrow{BC} \cdot \overrightarrow{CI} = \overrightarrow{BC} \cdot \left(\overrightarrow{CB} + \overrightarrow{BI}\right) = \overrightarrow{BC} \cdot \overrightarrow{CB} + \overrightarrow{BC} \cdot \overrightarrow{BI} = -4^2 + \overrightarrow{BC} \cdot \overrightarrow{AJ} = -16 - 4 \times 2 = -24$$

Réponses exercice 3 :

 $\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AH} \cdot \overrightarrow{AD} = \operatorname{car} \overrightarrow{AB}$ se projette orthogonalement en \overrightarrow{AH} sur (AD).

 $\overrightarrow{AC} \cdot \overrightarrow{AD} = \overrightarrow{AH} \cdot \overrightarrow{AD} = \operatorname{car} \overrightarrow{AC}$ se projette orthogonalement en \overrightarrow{AH} sur (AD).

Donc, on a bien $\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AC} \cdot \overrightarrow{AD}$.

De plus, $\overrightarrow{AE} \cdot \overrightarrow{AH} = (\overrightarrow{AD} + \overrightarrow{DE}) \cdot \overrightarrow{AH} = \overrightarrow{AD} \cdot \overrightarrow{AH} + \overrightarrow{DE} \cdot \overrightarrow{AH} = \overrightarrow{AD} \cdot \overrightarrow{AH} + 0$ (le triangle \overrightarrow{ADE} est rectangle en \overrightarrow{D}).

Conclusion: $\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AC} \cdot \overrightarrow{AD} = \overrightarrow{AE} \cdot \overrightarrow{AH}$.

Réponses exercice 4 :

$$\overrightarrow{AK} \cdot \overrightarrow{BJ} = \left(\overrightarrow{AJ} + \overrightarrow{JK}\right) \cdot \left(\overrightarrow{BA} + \overrightarrow{AJ}\right) = \left(\overrightarrow{AJ} + \frac{1}{2}\overrightarrow{AI}\right) \cdot \left(\overrightarrow{BA} + \overrightarrow{AJ}\right)$$

$$\overrightarrow{AJ} \cdot \overrightarrow{BA} + \overrightarrow{AJ} \cdot \overrightarrow{AJ} + \frac{1}{2}\overrightarrow{AI} \cdot \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AI} \cdot \overrightarrow{AJ} = 0 + \frac{1}{4}a^2 - \frac{1}{4}a^2 + 0 = 0$$
Les droites (AK) et (BJ) sont bien perpendiculaires.

Réponses exercice 5 :

a)
$$\overrightarrow{AB}\begin{pmatrix} -3\\2 \end{pmatrix}$$
 est un vecteur normal de la tangente qui admet donc une équation de la forme : $-3x + 2y + c = 0$.

La tangente doit passer par *B*. On en déduit que $-3 \times (-1) + 2 \times 3 + c = 0 \Leftrightarrow c = -9$.

Une équation de la tangente est donc : -3x + 2y - 9 = 0.

b) Le rayon du cercle est égal à la distance AB. Or, $AB = \sqrt{(-3)^2 + 2^2} = \sqrt{13}$. Une équation du cercle est donc $(x - x_A)^2 + (y - y_A)^2 = 13$, c'est à dire $(x - 2)^2 + (y - 1)^2 = 13$.