<u>Filière SMP/SMC - S1</u> Thermochimie - Série N°3

Exercice 1

- 1- En utilisant les données ci-dessous, calculer :
 - a- l'entropie absolue molaire standard de l'eau à 298K
 - **b-** l'entropie standard de formation de l'eau à 298K
 - c- l'entropie standard à 298 K accompagnant la réaction :

$$2H_2$$
 (g) + O_2 (g) $\to 2H_2O(liq)$

2- On fait réagir 0,5 mole de dioxygène, 0,5 mole de dihydrogène, calculer la variation de l'entropie standard de ce système réactionnel à 298K et à 500K et sous 1 bar.

Données

- Entropies absolues standard en J. K-1.mol-1:

$$S^{\circ}_{298}(H_2, g) = 130,6$$
; $S^{\circ}_{298}(O_2, g) = 205$; $S^{\circ}_{273}(H_2O, s) = 42,9$

- Chaleurs latentes kJ.mol-1:

$$\Delta_{fus}H^{\circ}_{273}(H_{2}O, s) = 6 \ kJ.mol^{-1} \ ; \ \Delta_{vap}H^{\circ}_{298}(H_{2}O, l) = 44 \ kJ.mol^{-1}$$

- Capacités calorifiques molaires en J.mol-1.K-1:

$$Cp(H_2O, g) = 34.2$$
; $Cp(H_2, g) = 28.9$; $Cp(O_2, g) = 29.4$
 $Cp(H_2O, l) = 47 + 30.10^{-3} T$

Exercice 2

1- Calculer à 25°C les enthalpies et les entropies standard de réaction dans les cas suivants:

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$
 (1)

$$CH_4(g) + H_2O(g) \to CO(g) + 3H_2(g)$$
 (2)

- 2- Commenter le signe des valeurs trouvées.
- 3- Discuter la spontanéité de ces réactions à 25°C et sous 1 bar.
- **4-** En admettant que $\Delta_r H^\circ$ et $\Delta_r S^\circ$ de la réaction (2) sont indépendantes de la température, déterminer la température à partir de laquelle la réaction est spontanée.

Données:

- Enthalpies standard de formation à 25°C (en kJ.mol⁻¹) :

- Entropies molaire standard absolues à 25°C (en J.mol⁻¹.K⁻¹)

$$S^{\circ}(SO_2, g) = 248.1$$
; $S^{\circ}(SO_3, g) = 256.6$; $S^{\circ}(O_2, g) = 205$; $S^{\circ}(CH_4, g) = 186.2$; $S^{\circ}(H_2O, g) = 188.7$; $S^{\circ}(H_2O, g) = 130.7$; $S^{\circ}(CO, g) = 197.6$.

Exercice 3

On introduit une mole de pentachlorure de phosphore PCl₅ dans un récipient de 58 L préalablement vide d'air et qu'on chauffe à 473 K. Il s'établit l'équilibre suivant :

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

- **1-** Exprimer la constante d'équilibre Kp en fonction du coefficient de dissociation α de PCl_5 et de la pression totale P du mélange gazeux.
- **2-** Sachant qu'à l'équilibre, la moitié de PCl₅ (g) initialement introduit s'est dissociée, calculer :
 - a- la pression totale du mélange,
 - **b-** la constante d'équilibre Kp à 473K.
 - c- la densité du mélange

Données:

- Constante des gaz parfaits : $R = 0.082 L.atm.mol^{-1}.K^{-1}$
- Masses molaires : air : 29 ; P : 30,97 ; Cl :35,45

Exercice 4

Le silicium Si, utilisé dans la fabrication industrielle des composants électroniques, est obtenu par réduction à haute température du trichlorosilane SiHCl₃ par le dihydrogène, suivant l'équilibre :

$$SiHCl_3(g) + H_2(g) \rightleftharpoons Si(s) + 3 HCl(g)$$

- **1-** Déterminer les valeurs de l'enthalpie standard et de l'entropie standard de la réaction à 298 K et commenter leurs signes.
- **2- a-** En admettant que l'enthalpie standard et l'entropie standard de la réaction sont indépendantes de la température, donner l'expression de l'enthalpie libre standard de la réaction en fonction de T.
 - **b** Calculer sa valeur à T = 1200 K.
 - **c** Déterminer la valeur de la constante d'équilibre Kp à 1200 K.
- **3** On part d'un mélange stœchiométrique des réactifs porté à 1200K,
 - a- Etablir l'expression de la pression partielle de HCl, à l'équilibre en fonction de la pression totale P_T et de la pression partielle du dihydrogène $P_{\rm H_2}$.
 - **b-** En déduire l'expression de Kp en fonction de P_T et P_{H_2} .
 - **c** Calculer la valeur de P_T si P_{H_0} du dihydrogène à l'équilibre est de 0,43 bar.
 - **d** Calculer la valeur du taux de transformation α de trichlorosilane SiHCl₃.
 - e- Calculer la valeur de la pression partielle de HCl.

Données: - Constante des gaz parfaits : R = 8,31 J.K⁻¹.mol⁻¹

Espèces chimiques	SiHCl3 (g)	HCl (g)	Si (s)	H ₂ (g)
$\Delta_f H^\circ_{298}$ (kJ.mol-1)	- 489,7	- 92,3	0	0
S°298 (J.K-1.mol-1)	310	187	21	131

Exercice 5

On considère l'équilibre de dissociation du dimère Fe₂Cl₆ en phase gazeuse suivant :

$$Fe_2Cl_6$$
 (g) \rightleftharpoons 2 $FeCl_3$ (g)

1-Calculer, dans le cas général, la variance V de ce système à l'équilibre et commenter sa valeur.

On introduit une quantité Fe_2Cl_6 à l'état solide dans un récipient initialement vide, que l'on porte ensuite à la température T_1 = 700K. Dans ces conditions, Fe_2Cl_6 passe totalement à l'état gazeux et se dissocie en partie, selon l'équilibre précédent sous P_T = 1bar.

Lorsque l'équilibre est établi, la densité du mélange gazeux est d = 10,46.

- **2-** Donner le tableau d'avancement en fonction de α , coefficient de dissociation de Fe₂Cl₆.
- 3- Montrer que la densité du mélange à l'équilibre est donnée par la relation :

$$d = \frac{11,19}{1+\alpha}$$

- **4- a-** Etablir l'expression de la constante Kp de cet équilibre en fonction de α et P_T .
 - **b-** Calculer Kp_1 , la valeur de Kp à T_1 = 700K.
- **5-** Déterminer l'enthalpie libre standard de la réaction $\Delta_r G^\circ$ à 700K. Commenter son signe.
- **6-** À la température T_2 = 800 K, la constante d'équilibre est Kp_2 = 0,115. Calculer :
 - **a-** l'enthalpie standard de la réaction, $\Delta_r H^{\circ}$ et commenter son signe.
 - **b-** l'entropie standard de la réaction, $\Delta_r S^{\circ}$ et expliquer son signe.
- **7-** Un mélange d'une mole de Fe₂Cl₆ (g) et d'une mole de FeCl₃ (g), est-il dans un état d'équilibre à 700K et sous 1bar ? Sinon, dans quel sens le système évoluera-t-il ?
- **8-** En justifiant votre réponse, préciser le sens de déplacement de l'équilibre lorsqu'on augmente :
 - a-la pression totale à température constante,
 - **b**-la température à pression constante.

Données:

- L'enthalpie et l'entropie standard de la réaction, $\Delta_r S^{\circ}$ et $\Delta_r H^{\circ}$, sont supposées indépendantes de la température.

- Masse molaire approximative de l'air : $M(air) = 29 \text{ g·mol}^{-1}$
- Masses molaires en g · mol-1: Cl : 35,5 ; Fe : 55,8
- Constante des gaz parfaits : R = 8,31 J.K-1.mol-1.

Exercice à faire chez soi

Exercice I

Un bloc de fer de 200 g, préalablement chauffé à 300°C, est immergé dans 0,5 L de méthanol liquide à 25°C. La température finale du système après équilibre thermique est de 47°C.

- **1-** Déterminer la capacité calorifique du méthanol liquide.
- 2- Calculer la variation d'entropie du système à l'équilibre.
- **3-** Déterminer l'enthalpie standard de vaporisation à 338 K du méthanol CH₃OH. *Données :*
- Masses molaires (g / mol) : Fe : 56; H : 1; C : 12; O : 16
- Masse volumique du méthanol liquide : ρ = 798 g/L
- Capacités calorifiques (en J.K⁻¹·mol⁻¹) :

Cp(Fe, s) = 25,1; $Cp(CH_3OH, g) = 43,9$

- Entropie standard absolue en J.K⁻¹·mol⁻¹

 $S_{298}(CH_3OH, liq) = 126.8$; $S_{350}(CH_3OH, q) = 251.1$

Temperature d'ébullition du méthanol sous 1 bar.

 $T_{\acute{e}b}(CH_3OH, liq) = 338 K$

Exercice II

Dans un récipient préalablement vidé d'air, de volume V = 2L et maintenue à 298K, on introduit 20g du carbamate d'ammonium solide NH₄CO₂NH₂(s) qui se décompose selon l'équilibre suivant :

$$NH_4CO_2NH_2(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

- A l'équilibre, la pression P mesurée dans le récipient est de 0,12 atm.
- 1- Calculer la variance de ce système et commenter sa valeur.
- **2-** Exprimer la constante Kp de cet équilibre en fonction de la pression P. Calculer sa valeur à 298K.
- **3-** Calculer les pressions partielles de l'ammoniac et du dioxyde de carbone à l'équilibre.
- **4-** Calculer l'enthalpie libre standard de réaction à 298K.
- **5-** Sachant que l'enthalpie standard de cette réaction est de 159,3kJ/mol, supposée indépendante de la température, déterminer la constante d'équilibre Kp' à la température T'= 340K.
- **6-** En justifiant votre réponse, préciser le sens déplacement de l'équilibre dans les cas suivants :
 - a- On augmente la température à P constante,
 - **b-** On augmente la pression totale P à T constante,
 - **c-** On ajoute une faible quantité du carbamate d'ammonium solide NH₄CO₂NH₂(s) à T et P constante.