Fiche résumée du cours d'analyse complexe et harmonique

1 Formule de Cauchy, intégration complexe

1.1 Etude des fonctions holomorphes

Définition 1.1.1 (Fonction holomorphe) Soit f une fonction définie sur un ouvert U de \mathbb{C} et à valeurs complexes, et continument différentiable (au sens de \mathbb{R}^2). f est holomorphe si et seulement si elle vérifie l'une des propriétés équivalentes suivantes :

i) $J_f(df)$ est une matrice de similitude.

ii)
$$\forall z_0 \in U$$
, $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$ est définie

iii) En notant u et v les parties réelles et imaginaires de f, et en posant $z=x+iy, \ \forall z_0=x_0,y_0)$ on a les relations de Cauchy Riemann : accolade

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \\ \frac{\partial v}{\partial x}(x_0, y_0) = -\frac{\partial u}{\partial y}(x_0, y_0) \end{cases}$$

Définition 1.1.2 (opérateurs de dérivation complexe) On pose

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

et

$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

On a alors

$$f \ holomorphe \Leftrightarrow \frac{\partial f}{\partial \overline{z}} = 0$$

Exemples : Les polynômes sont holomorphes sur \mathbb{C} . Les fractions rationnelles sont holomorphes là où elles sont définies

1.2 Théorème de Cauchy

Définition 1.2.1 (Chemin, lacet) Un chemin est une application γ : $[a,b] \to \mathbb{C}$. Un lacet est un chemin vérifiant $\gamma(a) = \gamma(b)$. Deux chemins γ_1 et γ_2 sont \mathbf{C}^1 -équivalents si il existe un C^1 -difféomorphisme ϕ tel que $\gamma_1 = \gamma_2 \circ \phi$. Ils sont C^1 -équivalents de même orientation si cette fonction est croissante. Soit f une fonction continue sur U, γ un chemin C^1 par morceaux de U. On définit:

$$\int_{\gamma} f = \sum_{i=1}^{N-1} \int_{t_i}^{t_{i+1}} f(\gamma(t)) \gamma'(t) dt$$

où les t_i sont les points de discontinuité de γ'

Proposition 1.2.1 Soit f continue sur U, γ in chemin C^1 par morceaux de U. Alors:

$$\left| \int_{\gamma} f \right| \leq \sup_{U} |f| . longueur(\gamma).$$

Soient γ_1 et γ_2 deux chemins C^1 par morceaux sur U, C^1 -équivalents de même orientation. Alors :

$$\int_{\gamma_1} f = \int_{\gamma_2} f.$$

Théorème 1.2.1 (Goursat) Soit U un ouvert de \mathbb{C} , T triangle plein fermé inclus dans U, f holomorphe sur U (ou f holomorphe sur $U - \{z_0\}$ continue sur U). Alors :

$$\int_{\partial T} f = 0.$$

Corollaire 1.2.1 (Formule de Cauchy sur les ouverts connexes) Soit U un ouvert convexe, γ un lacet C^1 par morceaux de U, f une fonction holomorphe sur U (ou continue sur U et holomorphe sur $U - \{z_0\}$. Alors:

$$\int_{\gamma} f = 0.$$

1.3 Formule de Cauchy homotope

Définition 1.3.1 (Homotopie) Soit U un ouvert, γ_1 et γ_2 deux chemins définis sur [a,b] de U. On dit que γ_1 et γ_2 sont **homotopes** s'il existe une application continue $H:[0,1]\times[a,b]\to U$ telle que $H(0,t)=\gamma_0(t)$ et $H(1,t)=\gamma_1(t)$ et :

Soit
$$H(s,a) = H(s,b) \quad \forall s \quad (homotopie \ de \ lacet)$$
.

Soit
$$\begin{cases} H(s,a) = \gamma_0(a) = \gamma_1(a) \\ H(s,b) = \gamma_0(b) = \gamma_1(b) \end{cases}$$
 (homotopie stricte de chemins)

Théorème 1.3.1 (De Cauchy) U ouvert, f holomorphe sur U (ou continue sur U, holomorphe sur $U - \{z_0\}$), γ_0 et γ_1 deux chemins C^1 par morceaux homotopes sur U, alors :

$$\int_{\gamma_0} f = \int_{\gamma_1} f.$$

En particulier, si γ_0 est un lacet C^1 par morceaux homotope à un point, $\int_{\gamma_0} f = 0$

 ${\bf Remarque}: {\bf sur}$ les convexes, tous les lacets sont homotopes à un point.

1.4 Formule de la moyenne

Définition 1.4.1 (Indice) U ouvert, γ un lacet C^1 par morceaux, $z_0 \notin Im(\gamma)$. L'indice de γ par rapport à z_0 , noté

$$Ind_{\gamma}(z_0) = \frac{1}{2i\pi} \int_{\gamma} \frac{dz}{z - z_0}.$$

C'est le "nombre de tours que fait γ autour de z_0 .

Proposition 1.4.1 L'indice est un nombre entier de \mathbb{Z} . Quand $z \to \infty$, $Ind_{\gamma}(z) \to 0$

Théorème 1.4.1 (Formule de la moyenne) Soit f une fonction holomorphe sur U, $z_0 \in U$, γ un lacet C^1 par morceaux homotope à un point tel que $z_0 \notin Im(\gamma)$. Alors:

$$Ind_{\gamma}(z_0)f(z_0) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

Théorème 1.4.2 (Principe du maximum) U ouvert connexe, f holomorphe sur U, atteignant son maximum en $z_0 \in U$, i.e. $\forall z \in U, |f| \leq |f(z_0)|$. Alors, f est constante.

1.5 Analyticité des fonctions holomorphes

1.5.1 Développement en série entière

Théorème 1.5.1 (Weierstrass) U ouvert, f holomorphe sur U, $z_0 \in U$, alors f est développable en sérien entière au voisinage de z_0 :

$$f(z) = \sum a_n(z_0)(z - z_0)^n \quad \forall z \in B(z_0, r), \ où \ r = d(z_0, \partial U).$$

En particulier, toutes les dérivées de f sont holomorphes sur U.

Proposition 1.5.1 Soit f une fonction holomorphe sur U, $z_0 \in U$, alors

$$Ind_{\gamma}(z_0)f^{(k)}(z_0) = \frac{k!}{2i\pi} \int_{\gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz$$
.

Corollaire 1.5.1 (principe de prolongement analytique) f holomorphe sur $U - \{z_0\}$, bornée au voisinage de z_0 . Alors, f admet un prolongement analytique sur U

 \mathbf{Cf} chapitre $\mathbf{3}$: f n'a pas de singularités si elle est bornée.

1.5.2 Théorème de Liouville

Théorème 1.5.2 (Liouville) f holomorphe sur \mathbb{C} tout entier. Alors, si f est bornée, f est constante.

Corollaire 1.5.2 Tout polynôme sur \mathbb{C} se factorise en produit de polynomes de degré 1, i.e. \mathbb{C} est algébriquement clos.

1.5.3 Formule de Cauchy homologique

Théorème 1.5.3 (Formule de Cauchy) U un ouvert, γ lacet C^1 par morceaux sur U tel que $\forall z \notin U$, $Ind_z(\gamma) = 0$, f holomorphe sur U. Alors, $\forall z_0 \in U - Im(\gamma)$, on a

$$Ind_{\gamma}(z_0)f(z_0) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

1.5.4 Principe des zéros isolés

Théorème 1.5.4 (Principe des zéros isolés) U ouvert connexe, f fonction holomorphe non identiquement nulle. Alors, les zéros de f sont isolés.

Théorème 1.5.5 (De l'argument) γ un lacet C^1 par morceaux qui partage le plan en deux composantes connexes, $\{z, Ind_z(\gamma) = 1\}$ et $\{z, Ind_z(\gamma) = 0\}$. Posons $K = \{z, Ind_z(\gamma) = 1\} \cup Im(\gamma)$. f holomorphe au voisinage de K qui ne s'annule pas sur $Im(\gamma)$. Alors, le nombre de zéros de f à l'intérieur de K comptés avec multiplicité est :

$$\frac{1}{2i\pi} \int \frac{f'(z)}{f(z)} dz.$$

1.6 Fonctions holomorphes et C-dérivabilité

Théorème 1.6.1 (De Morera) U un ouvert de \mathbb{C} , f continue sur U, alors :

$$f$$
 holomorphe $sur\ U \Leftrightarrow \forall T \subset U \ triangle \ plein \ ferm\'e, \ on \ a \ \int_{\partial T} f = 0.$

En particulier, les fonctions \mathbb{C} -dérivables sont holomorphes.

Théorème 1.6.2 (De Rouché) Soit U un ouvert contenant $\overline{B(z_0,R)}$, f, g deux fonctions holomorphes sur U. Supposons que, $\forall z \in C(z_0,R)$, on aie |f(z) - g(z)| < |f(z)|, alors f et g ont même nombre de zéros comptés avec multiplicité dans $B(z_0,R)$.

2 Théorème de représentation conforme (géométrie de \mathbb{C})

Définition 2.0.1 (Equivalence conforme) Soit U et V deux ouverts de \mathbb{C} . On dit que U est conformément équivalent à V si il existe une bijection holomorphe de U sur V. C'est une relation d'équivalence.

2.1 Lemme de Schwarz et automorphisme conforme du disque

Définition 2.1.1 (Transformation conforme) On appelle transformation conforme une transformation qui conserve les angles.

2.1.1 Lemme de Schwarz

Théorème 2.1.1 (De Schwarz) $f: B \to B$ holomorphe telle que f(0) = 0. Alors, $\forall z \in B$, |f(z)| = |z|, et $|f'(0)| \le 1$. De plus, si l'on a un cas d'égalité, f est une rotation.

2.1.2 Automorphisme conforme du disque

On notera $\varphi_a: z \to \frac{z-a}{1-\overline{a}z}$

Proposition 2.1.1 σ automorphisme conforme, alors $\exists a \in B, \theta \in \mathbb{R}$, $\sigma = \varphi_a \circ \rho_\theta$, où $\rho_\theta : z \to e^{i\theta}z$, et $\exists b \in B, \exists \widetilde{\theta} \in \mathbb{R}$, tels que $\sigma = \rho_{\widetilde{\theta}} \circ \varphi_b$

Lemme 2.1.1 (Schwarz-Tick) Soit f holomorphe $B \to B$, $z_1 \neq z_2$, $\omega_1 = f(z_1)$, $\omega_2 = f(z_2)$. Alors

$$\left| \frac{\omega_1 - \omega_2}{1 - \omega_1 \overline{\omega_2}} \right| \le \left| \frac{z_1 - z_2}{1 - z_1 \overline{z_2}} \right| \ et \ f'(z_1) \le \frac{1 - |\omega_1|^2}{1 - |z_1|^2}$$

Dans les cas d'égalité, f est une rotation.

2.2 Théorème de representation de Riemann

2.2.1 Notion de compacité

Théorème 2.2.1 (De Montel) U ouvert, \mathscr{F} une famille de fonctions holomorphes telles que, $\forall K$ compact de U, $\exists M_k$, $\forall f \in \mathscr{F}, \forall z \in K, |f(z)| \leq M_K$. Alors, \mathscr{F} est relativement compacte dans l'ensemble des fonctions holomorphes sur U pour la topologie de la convergence compacte.

2.2.2 Théorème de représentation conforme

Définition 2.2.1 (Simple connexité) un ouvert U est simplement connexe s'il est connexe et si tout lacet est homotope à un point.

Théorème 2.2.2 (Riemann) $U \neq \emptyset, \neq \mathbb{C}$ ouvert simplement connexe alors U est conformément équivalent à B.

Lemme 2.2.1 $U \neq \mathbb{C}$ non vide simplement connexe, alors U est conformément équivalent à un ouvert non vide borné simplement connexe.

Lemme 2.2.2 U ouvert non vide simplement connexe inclus dans B contenant 0.

$$\chi = \{ \psi : U \to B, \ \psi \ holomorphe \ injective, \ et \ \psi(0) = 0 \}$$

Alors, $\forall \psi \in \chi$, on a

$$\psi(U) = B \Leftrightarrow |\psi'(0)| = \max_{\varphi \in \chi} |\varphi'(0)|$$

Corollaire 2.2.1 (carac. de la simple connexité) U un ouvert de \mathbb{C} , alors, les propriétés suivantes sont équivalentes :

- i) U est simplement connexe
- ii) Pour toute fonction f holomorphe $U \to \mathbb{C}^*$, il existe une détermination holomorphe de $\log f$ sur U
- iii) Pour toute fonction f holomorphe $U \to \mathbb{C}^*$, il existe une détermination holomorphe de \sqrt{f} sur U
- iv) U est conformément équivalent au disque unité
- v) Pour toute fonction f holomorphe, pour tout lacet γC^1 par morceaux, on a $\int_{\gamma} f = 0$
- vi) La sphère de Riemann privée de U est connexe.
- vii) Toute fonction holomorphe peut être approchée uniformément par des polynômes sur les compacts.

3 Singularités isolées

3.1 Développement de Laurent

3.1.1 Foncions holomorphes sur une couronne

Définition 3.1.1 (Série de laurent) Soit f une fonction holomorphe sur $C(a, r_1, r_2)$, on appelle n-ième coefficient de Laurent de f en a, pour $n \in \mathbb{Z}$ la quantité

$$C_n = \frac{1}{2i\pi} \int_{\partial B^+(a,r)} \frac{f(z)}{(z-a)^{n+1}} dz, \quad r \in]r_1, r_2[$$

On appelle série de Laurent de f en a la quantité

$$\sum_{n\in\mathbb{Z}}C_n(z-a)^n$$

La définition est intrinsèque (ne dépend pas de r)

Théorème 3.1.1 Soit f holomorphe sur $C(0, r_1, r_2)$, on note $\sum C_n z^n$ sa série de Laurent. On a alors :

- i) $\sum_{n\geq 0} C_n z^n$ converge normalement sur les compacts de $B(0,r_2)$.
- ii) $\sum_{n<0} C_n z^n$ converge normalement sur les compacts de $\mathbb{C}-\overline{B}(0,r_1)$
- iii) $\sum_{n\in\mathbb{Z}} C_n z^n$ converge normalement sur tous les compacts de la couronne, et $f(z) = \sum_{n\in\mathbb{Z}} C_n z^n$, $\forall z \in C(0, r_1, r_2)$

3.1.2 Classification des singularités

Définition 3.1.2 (Singularités en 0) Soit f une fonction holomorphe sur $B(0,1) - \{0\}$.

- 1. On dit que f a une **singularité** éliminable en 0 si elle est bornée au voisinage de 0 (principe de prolongement analytique, f se prolonge en une fonction holomorphe sur B) On a alors $C_n = 0 \ \forall n < 0$
- 2. On dit que f a un **pôle** de multiplicité d'ordre k en 0 si k est le plus petit entier positif tel que $z \mapsto z^k f(z)$ est bornée au voisinage de 0. Alors, $C_n = 0$, $\forall n < -k$.
- 3. On dit que f a une singularité essentielle en 0 si $\forall k, z \mapsto z^k f(z)$ n'est pas bornée au voisinage de 0. $(C_{-n} \neq 0$ pour une infinité de n positifs.)

Théorème 3.1.2 (Casorati-Weierstrass) f holomorphe sur B^* avec une singularité essentielle an 0. Alors, $\forall s \in]0,1[$, l'image de $B(0,s)-\{0\}$ par f est dense dans $\mathbb C$

3.1.3 Singularité à l'infini

Définition 3.1.3 (Singularités à l'infini) Soit f une fonction holomorphe sur \mathbb{C} (ou sur $\mathbb{C} - \overline{B}(0,R)$.

- 1. On dit que f a une singularité éliminable à l'infini si $z \mapsto f(1/z)$ admet une singularité éliminable en 0. (Si f est entière et a une singularité éliminable à l'infini, alors f est constante)
- 2. On dit que f a un pôle de multiplicité d'ordre k à l'infini si z → f(1/z) admet un pôle d'ordre k en 0. Si f est entière et a un pôle d'ordre k en à l'infini, (z → f(z) P_k(z))z^{-k} est alors holomorphe sur C, et bornée, donc constante. (prolongement analytique en 0) f est donc un polynôme d'ordre k.
- 3. On dit que f a une singularité essentielle à l'infini si $z \mapsto f(1/z)$ admet une singularité essentielle en 0.

3.2 Fonctions méromorphes et théorème des résidus

Définition 3.2.1 (Fonction méromorphe) Soit U un ouvert. On dit que f est méromorphe sur U s'il existe un ensemble $S \subset U$ discret tel que :

- i) f est holomorphe sur U S
- ii) f admet des pôles aux points de S

Proposition 3.2.1 Soit U connexe, l'ensemble des fonctions méromorphes sur U a une structure de corps.

Théorème 3.2.1 Soit U connexe, et γ un lacet C^1 par morceaux homotope à un point sur U, f une fonction holomorphe sur U - S telle que f n'a pas de pôle sur $Im(\gamma)$; alors:

$$\int_{\gamma} f = 2i\pi \sum_{a \in S} Res(f, a) Ind_{\gamma}(a) ,$$

où Res(f,a), appellé **résidu de** f **en** a est le coefficient de 1/(z-a) dans le développement en série de laurent de f en a.

3.2.1 Exemples de calculs d'intégrales

3.3 Singularités essentielles et théorème de Picard

Au voisinage d'une singularité essentielle, l'image d'une fonction holomorphe est dense dans \mathbb{C} . C'est \mathbb{C} privé d'au plus un point.

3.3.1 Version géométrique du lemme de Schwarz

Définition 3.3.1 (Métrique, courbure) U ouvert de \mathbb{C} , on appelle métrique sur U toute application $\rho \in \mathscr{C}(U,\mathbb{R}^+)$ telle que ρ est de classe C^2 sur le domaine U_{ρ} où elle est non nulle. Soit ρ une métrique sur U, on définit la **courbure** de ρ sur U_{ρ} par

$$\kappa_{\rho}(z) = -\frac{\Delta \log \rho(z)}{\rho^{2}(z)},$$

οù

$$\Delta = 4\partial z \partial \overline{z} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Définition 3.3.2 (Métrique de Poincarré) Elle est définie sur B, de courbure négative et constante,

$$\rho_0(z) = \frac{2}{1 - |z|^2}, \text{ et } \kappa_{\rho_0}(z) = -\frac{\partial z \partial \overline{z} \log \rho_0}{\rho_0^2}(z) = -1, \ \forall z \in B$$

Définition 3.3.3 (Image réciproque d'une métrique) Soient U_1, U_2 deux ouverts dde \mathbb{C} , ρ une métrique sur U_2 , et f une fonction holomorphe de U_1 sur U_2 , on appelle image réciproque de ρ par f, et on note $f^*\rho$ la métrique sur U_1 , définie par :

$$\forall z \in U_1, \ f^*\rho(z) = |f'(z)| \, \rho(f(z))$$

Proposition 3.3.1 Soit $f: U_1 \to U_2$ holomorphe et ρ une métrique sur U_2 , alors

$$\kappa_{f^*\rho}(z) = \kappa_{\rho}(f(z)), \ \forall z \in U_1$$

Lemme 3.3.1 (De Schwarz) Soit ρ une métrique strictement positive sur un ouvert U de \mathbb{C} telle que $\kappa_{\rho} \leq -1$, f fonction holomorphe de B dans U. Alors,

$$f^*\rho(z) \le \rho_0(z), \ \forall z \in B$$

3.3.2 Théorème de Liouville et Théorème de Picard

Théorème 3.3.1 (Liouville) Soit U_2 un ouvert tel qu'il existe une métrique ρ strictement positive sur U_2 , avec

$$\kappa_{\rho}(z) \le -A < 0, \ \forall z \in U_2$$

Alors, les fonction holomorphe de \mathbb{C} dans U_2 sont constantes. En particulier, les fonctions entières bornées sont constantes.

Corollaire 3.3.1 f entière et bornée, alors f est constante.

Corollaire 3.3.2 (Petit théorème de Picard) Soit f entière telle que $f(\mathbb{C}) \subset \mathbb{C} - \{0,1\}$, alors f est constante.

3.3.3 Théorème de Picard

Définition 3.3.4 (Famille normale) Soit \mathscr{F} une famille de fonctions holomorphes définies sur un ouvert U. On dit que \mathscr{F} est **normale** si de toute suite $(f_n)_n$ on peut extraire une suite $(g_n)_n$ telle que :

- Soit $(g_n)_n$ converge uniformément sur tout compact $K \subset U$.
- Soit $(g_n)_n$ diverge uniformément sur tout compact $K \subset U$. (i.e. g_n^{-1} CVU)

Proposition 3.3.2 (Théorème de Marly) Soit \mathscr{F} une famille de fonctions holomorphes sur un ouvert U, \mathscr{F} est normale si et seulement si $\{f^*\rho_0, f \in \mathscr{F}\}$ est équibornée qur tout compact $K \subset U$

4 Approximation rationnelle

4.1 Approximation polynômiale et rationnelle

Proposition 4.1.1 Soit U un ouvert borné, $a \in U$, $z \mapsto 1/(z-a)$ holomorphe sur $U - \{a\}$ ne peut pas être approchée uniformément par des polynômes sur ∂U .

Théorème 4.1.1 (Runge) Soit K un compact, S un ensemble qui intersecte toutes les composantes connexes bornées de $\mathbb{C}-K$, et posons $A=\{fonctions\ rationnelles\ \grave{a}\ p\^{o}les\ dans\ S\}$. Alors, A est dense dans l'ensemble des fonctions holomorphes au voisinage de K pour la topologie de la convergence compacte.

4.1.1 Formule de Cauchy "Uniforme"

Théorème 4.1.2 Soit U un ouvert, K un compact de U. Alors, il existe un ensemble de segments orientés $(\gamma_i)_{i=1..n}$, tel que $\forall f$ holomorphe sur U, $\forall z \in K$, on aie

$$f(z) = \frac{1}{2i\pi} \sum_{i=1}^{n} \int_{\gamma_i} \frac{f(z')}{z - z'} dz'$$
.

4.1.2 Théorème de Runge

4.1.3 Approximations polynômiales

Corollaire 4.1.1 Soit K compact, si $\mathbb{C} - K$ n'a pas de composantes connexes bornées, les fonctions holomorphes au voisinage de K sont approchables uniformément par des polynômes.

Théorème 4.1.3 (Margelyan) Soit K compact, si $\mathbb{C} - K$ n'a pas de composantes connexes bornées, les fonctions holomorphes à l'intérieur de K continues sur K, sont approchables uniformément par des polynômes.

4.2 localisation des zéros d'une fonction holomorphe

Théorème 4.2.1 (Weierstrass) Soit U un ouvert, S discret dans U, $\forall a \in S$, on se donne $m_a \in \mathbb{N}$. Alors, il existe une fonction holomorphe sur U dont les zéros sont exactement les points de S et, $\forall a \in S$, a est un zéro de multiplicité m_a

4.2.1 Produits finis

Rappel: Si $(f_n)_n$ est une suite de fonctions sur X, à valeurs dans \mathbb{C} , telles que $\sum (1 - f_n)$ est normalement convergente sur X, alors $\prod f_n$ est bien définie, et l'ensemble de ses zéros est l'ensemble des zéros des f_n . par ailleurs, si, $\forall n$, $||f_n - 1|| \le c < 1$, alors $\prod f_n = \exp(\sum \log(f_n))$.

Proposition 4.2.1 Soit $(f_n)_n$ une suite de fonctions holomorphes sur un ouvert U telle que $\sum (1 - f_n)$ est normalement convergente sur tout compact de U. Alors:

- i) $F = \prod_{0}^{\infty} f_n$ est holomorphe sur U
- ii) a est un zéro de F si et seulement si il existe n, $f_n(a)=0$, et $m_a(F)=\sum_{n=0}^{\infty}m_a(f_n)$.
- iii) $F'/F = \sum_{n=0}^{\infty} f'n/f_n$ si f_n n'a pas de zéro, $\forall n \geq N$

4.2.2 preuve du théorème de Weierstrass

On pose

$$W_p(z) = (1-z) \exp\left(\sum_{0}^{p} \frac{z^k}{k}\right).$$

Théorème 4.2.2 (Factorisation d'Hadamard) Soit F une fonction holomorphe dont les zéros répétés non nuls sont (α_p) , alors, il existe $m_0 \in \mathbb{N}$ est une fonction holomorphe g telle que $\forall z \in \mathbb{C}$

$$F(z) = z_0^m \prod_{p=0}^{\infty} W_p \left(\frac{z}{\alpha_p}\right) e^{g(z)}$$

4.2.3 Corps des fonctions méromorphes

Théorème 4.2.3 Soit U connexe; l'ensemble des fonctions méromorphes $sur\ U$ est le corps des fractions de l'anneau intègre des fonctions holomorphes $sur\ U$

4.3 Localisation des pôles d'une fonction méromorphe

4.3.1 Théorème de Mittag-Leffer

Théorème 4.3.1 Soit U un ouvert, S discret dans U, $\forall a \in S$, on se donne $m_a \in \mathbb{N}^*$ et $C_{a,n}$ pour $1 \leq n \leq m_a$

$$P_a(z) = \sum_{n=1}^{m_a} Ca, n(z-a)^{-n}$$
.

Alors, il existe une fonction F méromorphe sur U dont les pôles sont exactement les points de S et telle que le développement de Laurent de F au voisinage de $a \in S$ admet P_a comme partie singulière.

4.3.2 Un problème d'interpolation

Théorème 4.3.2 Soit U un ouvert, S un fermé discret de U. $\forall a \in S$, on se donne $m_a \in \mathbb{N}$ et $c_{a,0},...c_{a,m_a} \in \mathbb{C}$, alors, il eciste une fonction F holomorphe sur U et telle que, $\forall a \in S$, $\forall n \leq m_a$,

$$\frac{F^{(n)}(a)}{n!} = c_{a,n} .$$

5 Fonctions harmoniques

Définition 5.0.1 (Fonction harmonique) Soit U un ouvert de \mathbb{C} , on dit que U est harmonique sur U si elle vérifie

- i) u est C^2 sur U
- $ii) \Delta u = 0$

Proposition 5.0.1 L'ensemble des fonctions harmoniques est stable par conjuguaison, mais pas par multiplication. Si u est harmonique sur U et f holomorphe de V dans U, alors $u \circ f$ est harmonique sur V. Ceci est faux en général si f n'est que harmonique.

5.1 Harmonicité et holomorphie

5.1.1 Régularité C^{∞} des fonctions harmoniques

Théorème 5.1.1 Soit U un ouvert simplement connexe. u une fonction harmonique réelle sur U, alors il existe une fonction holomorphe sur U telle que u = Re(f). De plus, f est unique à addition d'une constante imaginaire pure près.

Corollaire 5.1.1 Soit U un ouvert quelconque, u une fonction harmonique sur U. Alors U est de classe C^{∞} , et toutes ses dérivées partielles sont harmoniques.

5.1.2 Analyticité des fonctions harmoniques

Définition 5.1.1 (Fonction \mathbb{R} -analyticité) Soit U un ouvert de \mathbb{C} , f est dite \mathbb{R} -analytique sur U, si au voisinage de chaque point $z_0 = x_0 + iy_0$,

$$f(x+iy) = \sum_{p,q} C_{p,q} (x-x_0)^p (y-y_0)^q.$$

Théorème 5.1.2 Soit U un ouvert de \mathbb{C} , u une fonction harmonique sur U, alors u est dite \mathbb{R} -analytique sur U.

Corollaire 5.1.2 (Prolongement analytique) Une fonction harmonique non nulle sur un ouvert connexe a des zéros de multiplicité finie.

5.1.3 Formule de la moyenne

Théorème 5.1.3 Soit u une fonction harmonique sur un ouvert U, $z_0 \in U$, soit r tel que $\overline{B}(z_0, r) \subset U$, alors

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$
.

Proposition 5.1.1 (Principe du maximum) Soit u une fonction harmonique sur un ouvert connexe U. Si $\exists z_0 \in U$, $\forall z \in U$, $|u(z)| \leq |u(z_0)|$, alors u est constante. Variante : u harmonique sur U ouvert borné, continue sur \overline{U} , alors u atteint son maximum sur ∂U .

5.2 Formule de Poisson

5.2.1 Noyau de Poisson

Définition 5.2.1 (Noyau de Poisson) Soit D le disque de centre z_0 et de rayon r. On appelle **noyau de poisson** sur D la fonction positive

$$\begin{array}{cccc} P_D & : & \partial D \times D & \rightarrow & \mathbb{R}_+^* \\ & (\zeta,z) & \mapsto & P_D(\zeta,z) \end{array} , \ avec \ P_D(\zeta,z) = \frac{|\zeta - z_0|^2 - |z - z_0|^2}{(\zeta - z)^2} \ .$$

Proposition 5.2.1 Soit D = B(0,1), on a les identités suivantes :

- i) $P_a(\zeta) = P(\zeta, a) = |\Phi'_a(\zeta)|$
- ii) $P_r(e^{it}) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{int}$

La seconde formulation sert à ecrire des développements en série entière.

Théorème 5.2.1 (Poisson) Soit D un disque, u harmonique au voisinage de D, alors

$$\forall z \in D, \ u(z) = \int_{\partial D} P_D(\zeta, z) u(\zeta) \frac{d\zeta}{|\partial D|}.$$

5.2.2 Inégalités de Cauchy

Théorème 5.2.2 (Inégalités de Cauchy) Soit K un compact d'un ouvert U, u une fonction harmonique sur U. Alors, $\forall (k_1, k_2) \in \mathbb{N}^2$, $\forall \delta > 0$, $\exists c > 0$,

$$\sup_{K} \left| \partial^k u \right| \le c \sup_{K_{\delta}} u \; ,$$

et ce indépendamment de la fonction harmonique u choisie, où K_δ est le δ -voisinage de K.

Corollaire 5.2.1 Soit U un ouvert, (u_n) une famille de fonctions harmoniques équibornées sur tout compact de U. Alors, à extraction près, (u_n) converge vers une fonction harmonique u pour la topologie de la convergence compacte.

Théorème 5.2.3 (Harnack) Soit u une fonction harmonique réelle positive sur $B(z_0, r)$. Alors, $\forall r' < r$, $\forall t \in [0, 2\pi]$, on a

$$\frac{r-r'}{r+r'}u(z_0) \le u(z_0 + r'e^{it}) \le \frac{r+r'}{r-r'}u(z_0).$$

Corollaire 5.2.2 (Théorème d'harnack) Soit U un ouvert connexe, (u_n) une suite croissante de fonctions harmoniques réelles, alors :

- $Soit(u_n)$ converge uniformément sur tout compact de U vers u harmonique.
- $Soit(u_n)$ diverge uniformément sur tout compact de U.

5.3 Problème de Dirichlet

Définition 5.3.1 (Problème de Dirichlet) On considère la résolution du problème suivant, appellé problème de Dirichlet:

$$\left\{ \begin{array}{l} \Delta u = 0 \\ u \ continue \ sur \ \overline{U}, \ u = \omega \ sur \ le \ bord \ \partial U \end{array} \right.$$

5.3.1 Intégrales de Poisson sur B = B(0,1)

Définition 5.3.2 (Intégrale de Poisson) Soit U un ouvert de \mathbb{C} , si ω est une fonction intégrable sur ∂U , on appelle intégrale de Poisson, pour $z \in U$,

$$P_{\omega}(z) = \int_{\partial D} P(z, \zeta) \omega(z) \frac{d\zeta}{2\pi} .$$

Si μ est une mesure bornée sur ∂U , on définit

$$P_{\mu}(z) = \int_{\partial D} P(z,\zeta) d\mu(\zeta) .$$

L'intégrale de Poisson d'une mesure bornée est une fonction harmonique sur B.

Proposition 5.3.1 Si $\zeta_0 \in B$ est un point de continuité de ω alors

$$\lim_{z \to \zeta_0} P_{\omega}(z) = \omega(\zeta_0)$$

Théorème 5.3.1 Soit ω une fonction continue sur ∂B . Alors, il existe une unique solution au problème de Dirichlet.

5.3.2 Cas des domaines de Jordan

Définition 5.3.3 (Lacet de Jordan) On appelle lacet de Jordan tout lacet $\gamma: [a,b] \to \mathbb{C}$ tel que $\gamma_{|[a,b[}$ est injectif. On appelle courbe de jordan fermée l'image Γ d'un lacet de Jordan.

Théorème 5.3.2 (Jordan) Soit γ une courbe de Jordan, $\mathbb{C} - \Gamma$ a deux composantes connexes exactement, dont une est bornée, et l'autre non bornée.

Définition 5.3.4 (Domaine de Jordan) On appelle Domaine de Jordan la composante connexe bornée de $\mathbb{C} - \Gamma$, où Γ est une courbe de Jordan.

Théorème 5.3.3 (Caractérisations de la simple connexité) Soit U un ouvert connexe borné de \mathbb{C} .

- i) $\mathbb{S} U$ est connexe.
- ii) $\forall \gamma \ lacet \ C^1 \ par \ morceaux \ sur \ U, \ \forall f \ holomorphe \ sur \ U, \ on \ a \ \int_{\gamma} f = 0$
- iii) On a une détermination holomorphe de ln(f) ou de \sqrt{f} pour toute fonction $f: U \to \mathbb{C}^*$ holomorphe.
- iv) On peut approcher toute les fonctions holomorphes uniformément par des polynômes. (Runge)
- $v)\ U\ est\ conformément\ équivalent\ à\ B\ (Riemann)$

Théorème 5.3.4 (Carathéodory) Soit D un domaine de Jordan, et f un biholomorphisme $D \to B$. Alors f se prolonge en un homéomorphisme de $\overline{D} \to \overline{B}$

Théorème 5.3.5 Soit D un domaine de Jordan, ω continue sur ∂D , alors il existe une unique solution au problème de Dirichlet.

5.3.3 Harmonicité et formule de la moyenne

Proposition 5.3.2 Soit U un ouvert de \mathbb{C} , u une fonction continue sur U telle que $\forall z_0 \in U$, $\exists n_0 > 0$, $\forall r < r_0$,

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$
.

Alors, u est harmonique sur U.

6 Fonctions sous-harmoniques

Définition 6.0.5 (Fonction sous harmonique) Soit U un ouvert de \mathbb{C} , $u: U \to [-\infty, +\infty[$, on dit que μ est sous harmonique sur U si

- u est semi continue supérieurement : $\forall c \in \mathbb{R}, \{z \mid u(z) < c\}$ est ouvert.
- u vérifie la propriété locale de la sous moyenne :

$$\forall z_0 \in U, \ \exists r_0 > 0, \ \forall r < r_0, \ u(z_0) \le \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$
.

Proposition 6.0.3 Soient u, v deux fonctions sous-harmoniques sur un ouvert U, alors

- $-\max u, v \text{ est sous-harmonique}.$
- $\forall lambda \geq 0, \ \lambda u + v \ est \ sous \ harmonique.$
- Pour φ fonction croissante convexe définie sur $[-\infty; +\infty[$, $\varphi \circ u$ est sous-harmonique.

6.1 Principe du maximum, propriété du majorant harmonique

6.1.1 Principe du maximum

Proposition 6.1.1 Soit U un ouvert connexe de \mathbb{C} , u une fonction sousharmonique sur U. Si $\exists z_0 \in U, \forall z \in U, u(z) \leq u(z_0)$, alors u est constante.

Proposition 6.1.2 Soit U un ouvert borné, et u une fonction sousharmonique sur U, semi-continue supérieurement sur \overline{U} , alors

$$\max_{\overline{U}} \ u = \max_{\partial U} \ u \ .$$

6.1.2 Propriété du majorant harmonique

Proposition 6.1.3 (Du majorant harmonique) Soit U un ouvert de \mathbb{C} , u une fonction semi-continue supérieurement sur U. Alors, les propriétés suivantes sont équivalentes :

- i) u est sous-harmonique.
- ii) $\forall V$ relativement compact dans U, $\forall h$ continue $sur \overline{V}$, harmonique sur V, vérifiant $u \leq h$ $sur \partial V$, on a $u \leq h$ sur V.
- iii) Pour tout disque $\overline{D} \subset U$, $\forall z \in D$,

$$u(z) \le \int_{\partial D} P_D(z,\zeta) u(\zeta) \frac{d\zeta}{|\partial D|}$$

6.1.3 Théorème de Hadamard

Théorème 6.1.1 Soit u une fonction sous-harmonique sur $B(z_0, R)$. Soit r < R, on définit $I_r(u) = \frac{1}{2\pi} \int u(z + re^{i\theta} d\theta)$.