EXERCICES SUR L'INTEGRALE DE RIEMANN

1. a) Si f est une fonction en escalier, montrez que |f| est aussi en escalier.

b) Si f et g sont en escalier, montrer que f+g et fg sont en escalier.

2. On rappelle les notations suivantes, valables pour toutes fonctions φ et ψ :

- $-\max(\varphi,\psi)$ est la fonction qui à x associe $\max(\varphi(x),\psi(x)),$
- $-\min(\varphi,\psi)$ est la fonction qui à x associe $\min(\varphi(x),\psi(x)),$
- $-\varphi_+ = \max(\varphi, 0) \text{ et } \varphi_- = \max(-\varphi, 0).$

a) Montrer que, pour tous réels α et β , l'on a

$$\max(\alpha, \beta) = \frac{1}{2}(|\alpha - \beta| + \alpha + \beta),$$

et trouver une formule analogue pour $min(\alpha, \beta)$.

b) En déduire que si f et g sont en escalier (resp. intégrables), alors $\max(f,g)$, $\min(f,g)$, f_+ , f_- sont en escalier (resp. intégrables).

3. On note E(x) la partie entière du nombre x. Calculer, pour a>0, l'intégrale $\int\limits_0^a E(x)\,dx$.

4. Soit f l'application de [0, 1] dans \mathbb{R} définie par f(x) = x. Soit $\varepsilon > 0$. Construire deux fonctions en escalier g et G de [0, 1] dans \mathbb{R} , telles que

$$g \le f \le G$$
 et $\int_{0}^{1} (G(x) - g(x)) dx \le \varepsilon$.

5. Soit f une application en escalier de [a, b] dans \mathbb{R} . On pose, pour x dans [a, b],

$$F(x) = \int_{a}^{x} f(t) dt.$$

a) Montrer que F est continue sur [a, b].

b) Soit c dans]a, b[. On suppose que $\lim_{x\to c^+} f(x) \neq \lim_{x\to c^-} f(x)$. Montrer que F n'est pas dérivable au point c.

1

6. Démontrer la croissance de l'intégrale : si f et g sont intégrables sur [a,b], et si $f \leq g$, alors

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

- 7. Soient m et M deux réels tels que 0 < m < M, et soit f une application intégrable de [a, b] dans [m, M]. Montrer que 1/f est intégrable sur [a, b].
- **8.** Soit f une fonction bornée définie sur [a, b] à valeurs dans \mathbb{R} , et continue sur [a, b]. Montrer que f est intégrable sur [a, b].

Plus généralement montrer qu'une fonction bornée définie sur [a, b] à valeurs dans \mathbb{R} continue sauf en un nombre fini de points est intégrable au sens de Riemann.

- 9. Montrer que le produit de deux fonctions Riemann-intégrables est Riemann-intégrable.
- 10. Soit f la fonction définie sur [0, 1] par

$$f(x) = \begin{cases} (-1)^{E(1/x)} & \text{si } 0 < x \le 1\\ 0 & \text{si } x = 0 \end{cases}$$

- où E(u) désigne la partie entière de u.
- a) Montrer que f est intégrable sur [0, 1].
- b) Calculer $\int_{0}^{1} f(x) dx \text{ sachant que } \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = \ln 2.$
- 11. Soit f une application décroissante de $[0, +\infty[$ dans $\mathbb R$ qui tend vers zéro à l'infini. Calculer $\lim_{n\to +\infty} \int\limits_{\mathbb R}^{n^2} f(t)e^{it}\,dt$.
- 12. Pour tout réel λ , et toute fonction Riemann-intégrable f de [a, b] dans \mathbb{R} on pose

$$I(\lambda) = \int_{a}^{b} f(x)e^{i\lambda x} dx.$$

- a) Si f est en escalier, montrer que $I(\lambda)$ admet 0 pour limite lorsque λ tend vers $+\infty$.
- b) En déduire le résultat dans le cas général (Théorème de Riemann-Lebesgue).
- c) Si f est décroissante et positive, montrer que la fonction qui à λ associe $\lambda I(\lambda)$ est bornée au voisinage de l'infini.

2

- d) Montrer que ce dernier résultat est encore vrai si f est de classe C^1 .
- 13. Soit f une application intégrable de [a,b] dans $\mathbb C.$ Démontrer l'inégalité

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx, \qquad (1)$$

par la méthode suivante :

on montre tout d'abord (1) lorsque f est en escalier, puis on traite le cas général par passage à la limite.

Corrigé

1. Si f est une fonction en escalier, et si (x_0, x_1, \ldots, x_n) est une subdivision adaptée à f, avec $f(x) = \lambda_i$ pour x dans $]x_{i-1}, x_i[$, alors on a dans le même intervalle $|f(x)| = |\lambda_i|$, donc |f| est aussi en escalier.

Remarque : il en est de même pour $\phi \circ f$, lorsque ϕ est une application numérique définie sur l'image de f, puisque, pour x dans $]x_{i-1}, x_i[$, on a $\phi \circ f(x) = \phi(\lambda_i)$.

Soient f et g deux fonctions en escalier. Si (x_0, x_1, \ldots, x_n) est une subdivision adaptée à f et $(x'_0, x'_1, \ldots, x'_p)$ est une subdivision adaptée à g. L'ensemble formé des points de ces deux subdivisions donne une nouvelle subdivision $(x''_0, x''_1, \ldots, x''_q)$ qui est une subdivision plus fine que les deux premières. (Remarque : $x_0 = x'_0 = x''_0$, et $x_n = x'_p = x''_q$).

Sur] x_{i-1}'' , x_i'' [, on a

$$f(x) = \lambda_i$$
 et $g(x) = \mu_i$,

alors

$$(f+g)(x) = \lambda_i + \mu_i$$
 et $(fg)(x) = \lambda_i \mu_i$,

ce qui prouve que les fonctions f + g et fg sont en escalier.

2. a) Si $\alpha \geq \beta$, on a $|\alpha - \beta| = \alpha - \beta$ et

$$\frac{1}{2}(|\alpha - \beta| + \alpha + \beta) = \frac{1}{2}((\alpha - \beta) + \alpha + \beta) = \alpha = \max(\alpha, \beta).$$

Si $\alpha \leq \beta$, on a $|\alpha - \beta| = -\alpha + \beta$ et

$$\frac{1}{2}(|\alpha - \beta| + \alpha + \beta) = \frac{1}{2}((-\alpha + \beta) + \alpha + \beta) = \beta = \max(\alpha, \beta).$$

Puisque l'on a $\max(\alpha, \beta) + \min(\alpha, \beta) = \alpha + \beta$, on en déduit

$$\min(\alpha + \beta) = \frac{1}{2}(-|\alpha - \beta| + \alpha + \beta).$$

b) Si f et g sont en escalier (resp. intégrables), il en est de même de f+g de f-g, puis de |f-g|, et donc, des combinaisons linéaires (|f-g|+f+g)/2 et (-|f-g|+f+g)/2, c'est-à-dire de $\max(f,g)$ et de $\min(f,g)$.

En particulier, puisque 0 est en escalier et intégrable, il en est de même de $\max(f,0)$ et de $\max(-f,0)$ c'est-à-dire de f_+ et f_- .

3. La fonction E est en escalier sur l'intervalle [0, a]. Soit n = E(a). On a donc $n \le a < n+1$. Alors $(0, 1, \ldots, n, a)$ est une subdivision adaptée à la fonction E, et l'on a

$$\mathbf{E}(x) = \left\{ \begin{array}{ll} i-1 & \text{si } x \in \]i-1, \ i \ [\ \text{et } 1 \leq i \leq n \\ n & \text{si } x \in \]n, \ a \ [\end{array} \right. .$$

On a donc

$$\int_{0}^{a} E(x) dx = \sum_{i=1}^{n} (i-1)(i-(i-1)) + n(a-n).$$

Mais

$$\sum_{i=1}^{n} (i-1)(i-(i-1)) = \sum_{i=1}^{n} (i-1),$$

est la somme des entiers de 0 à n-1 et vaut donc n(n-1)/2, donc

$$\int_{0}^{a} E(x) dx = \frac{n(n-1)}{2} + n(a-n).$$

Que l'on peut écrire encore

$$\int_{0}^{a} E(x) dx = \frac{E(a)(E(a) - 1)}{2} + E(a)(a - E(a)).$$

4. Soit $n>1/\varepsilon,$ et soit i entre 1 et n. On pose, si x appartient à $[(i-1)/n,\,i/n\,[$

$$g(x) = \frac{i-1}{n}$$
 et $G(x) = \frac{i}{n}$,

avec g(1) = G(1) = 1. Alors dans [(i-1)/n, i/n]

$$g(x) \le x \le G(x)$$
.

Les inégalités précédantes sont donc vraies pour tout x de [0, 1]. Par ailleurs dans [(i-1)/n, i/n[, on a

$$G(x) - g(x) = \frac{1}{n}.$$

Alors on obtient

$$\int_{0}^{1} (G(x) - g(x)) dx = \sum_{i=1}^{n} \frac{1}{n} \left(\frac{i}{n} - \frac{i-1}{n} \right) = \sum_{i=1}^{n} \frac{1}{n^{2}} = \frac{1}{n} < \varepsilon.$$

(L'intégrale est l'aire de n carrés de côté de longueur 1/n).

5. Si (x_0, x_1, \ldots, x_n) est une subdivision adaptée à f et si $f(x) = \lambda_i$ sur $]x_{i-1}, x_i[$, on a, pour x dans $[x_{p-1}, x_p[$,

$$F(x) = \int_{0}^{x} f(t) dt = \sum_{i=1}^{p-1} \lambda_i (x_i - x_{i-1}) + \lambda_p (x - x_{p-1}),$$

et si x se trouve dans $[x_p, x_{p+1}]$,

$$F(x) = \int_{0}^{x} f(t) dt = \sum_{i=1}^{p} \lambda_{i}(x_{i} - x_{i-1}) + \lambda_{p+1}(x - x_{p}).$$

a) Sur $]x_{p-1}, x_p[$ la fonction F est polynomiale donc continue. Au point x_p , pour $1 \le p \le n-1$, on a

$$\lim_{x \to x_p^-} F(x) = \lim_{x \to x_p^-} \left(\sum_{i=1}^{p-1} \lambda_i (x_i - x_{i-1}) + \lambda_p (x - x_{p-1}) \right) = \sum_{i=1}^p \lambda_i (x_i - x_{i-1}) = F(x_p),$$

et

$$\lim_{x \to x_p^+} F(x) = \lim_{x \to x_p^+} \left(\sum_{i=1}^p \lambda_i (x_i - x_{i-1}) + \lambda_{p+1} (x - x_p) \right) = \sum_{i=1}^p \lambda_i (x_i - x_{i-1}).$$

(si p = n et p = 0 une seule des limites existe).

La fonction F est continue en x_p . Elle est donc continue sur [a, b].

b) En dérivant, on trouve pour x dans $]x_{p-1}, x_p[$,

$$F'(x) = \lambda_p = f(x)$$

Au point $c = x_p$, la fonction F' possède des limites à droite et à gauche distinctes, et il en résulte que F n'est pas dérivable en c.

6. Si ϕ est une fonction en escalier minorant f elle minore aussi g, donc l'ensemble des fonctions en escalier minorant f est inclus dans l'ensemble des fonctions en escalier minorant g. Il en résulte que

$$\mathcal{I}_{-}(f) = \sup_{\substack{\phi \in \mathcal{E}([a,b])\\ \phi < f}} \phi \le \sup_{\substack{\phi \in \mathcal{E}([a,b])\\ \phi < g}} \phi = \mathcal{I}_{-}(g).$$

Mais puisque les fonctions f et g sont Riemann-intégrables, leurs intégrales sont égales à leurs intégrales inférieures, et donc

$$\int_{a}^{b} f(x) \, dx = \mathcal{I}_{-}(f) \le \mathcal{I}_{-}(g) = \int_{a}^{b} g(x) \, dx \, .$$

7. Soit $\varepsilon > 0$. Il existe G et g en escalier telles que $g \leq f \leq G$ et

$$\int_{a}^{b} (G(x) - g(x)) dx < m^{2} \varepsilon.$$

Posons $G_1 = \min(G, M)$, et $g_1 = \max(g, m)$. Ce sont encore des fonctions en escalier (ex 2). Comme $G_1 \leq G$ et $g_1 \geq g$, on a

$$G_1 - g_1 \le G - g \,,$$

et donc

$$\int_{a}^{b} (G_1(x) - g_1(x)) dx \le \int_{a}^{b} (G(x) - g(x)) dx.$$

D'autre part,

- si
$$G(x) \le M$$
, on a $G_1(x) = G(x) \ge f(x)$,
- si $G(x) \ge M$, on a $G_1(x) = M \ge f(x)$,

donc $G_1 \geq f$, et de la même manière $g_1 \leq f$. Finalement

$$0 < m \le g_1 \le f \le G_1 \le M$$
.

Alors $1/G_1$ et $1/f_1$ sont aussi en escalier, et

$$\frac{1}{M} \le \frac{1}{G_1} \le \frac{1}{f} \le \frac{1}{g_1} \le \frac{1}{m}$$
.

D'autre part

$$\frac{1}{g_1(x)} - \frac{1}{G_1(x)} = \frac{G_1(x) - g_1(x)}{G_1(x)g_1(x)} \le \frac{G_1(x) - g_1(x)}{m^2},$$

donc

$$\int_{a}^{b} \left(\frac{1}{g_1(x)} - \frac{1}{G_1(x)} \right) dx \le \frac{1}{m^2} \int_{a}^{b} (G_1(x) - g_1(x)) dx < \varepsilon.$$

Il en résulte que 1/f est intégrable.

8. Soit α dans]a, b[, et $\varepsilon > 0$. Par hypothèse, il existe M et m (que l'on peut supposer distincts) tels que $m \leq f \leq M$. La fonction f est continue sur $[\alpha, b]$ donc Riemann-intégrable. Il existe deux fonctions en escalier g et G, sur $[\alpha, b]$ telles que $g \leq f \leq G$ et

$$\int_{a}^{b} (G(x) - g(x)) \, dx < \frac{\varepsilon}{2} \, .$$

On définit alors deux fonctions en escalier sur [a, b] en posant

$$G_1(x) = \begin{cases} G(x) & \text{si } x \in [\alpha, b] \\ M & \text{si } x \in [a, \alpha[\end{cases} \quad \text{et} \quad g_1(x) = \begin{cases} g(x) & \text{si } x \in [\alpha, b] \\ m & \text{si } x \in [a, \alpha[\end{cases}$$

On a encore $g_1 \leq f \leq G_1$, et

$$\int_{a}^{b} \left(G(x) - g(x)\right) dx = \int_{a}^{\alpha} \left(G(x) - g(x)\right) dx + \int_{\alpha}^{b} \left(G(x) - g(x)\right) dx \le (M - m)(\alpha - a) + \frac{\varepsilon}{2}.$$

Il suffit d'avoir choisi α tel que $a < \alpha < a + \frac{\varepsilon}{2(M-m)}$, pour que

$$\int_{a}^{b} (G(x) - g(x)) \, dx < \varepsilon \, .$$

Il en résulte que f est Riemann-intégrable.

La démonstration est la même si la continuité a lieu sur [a, b[. Dans le cas général, on peut écrire l'intervalle comme réunion d'un nombre fini d'intervalles fermés, où f n'a une discontinuité

qu'en une des deux bornes. On a donc une subdivision $a = a_0 < a_1 < \cdots < a_n = b$, et f est intégrable sur chacun des $[a_{i-1}, a_i]$ pour $1 \le i \le n$. Alors, si l'on se donne ε , on trouve pour chaque i des fonctions étagées sur $[a_i, b_1[$ telles que $g_i \le f \le G_i$ et

$$\int_{a_{i-1}}^{a_i} \left(G_i(x) - g_i(x) \right) dx < \frac{\varepsilon}{n} \,.$$

On définit G et g en posant respectivement $G(x) = G_i(x)$ et $g(x) = g_i(x)$ si x appartient à $[a_{i-1}, a_i]$. Alors G et g sont en escalier sur [a, b], vérifient $g \leq f \leq G$, et l'on a

$$\int_{a}^{b} (G(x) - g(x)) dx = \sum_{i=1}^{n} \int_{a_{i-1}}^{a_i} (G_i(x) - g_i(x)) dx < \varepsilon.$$

Il en résulte que f est Riemann-intégrable.

9. Soit f et g définies sur [a, b] Riemann-intégrables et positives. En particulier les fonctions f et g sont bornées. Il existe des réels M et N tels que $0 \le f < M$ et $0 \le g < N$. Soit $\varepsilon > 0$. Il existe des fonctions en escalier, f_{ε} , F_{ε} , g_{ε} , G_{ε} , telles que

$$f_{\varepsilon} \leq f \leq F_{\varepsilon}$$
 et $g_{\varepsilon} \leq g \leq G_{\varepsilon}$,

avec

$$\int_{a}^{b} (F_{\varepsilon} - f_{\varepsilon})(x) \, dx \le \frac{\varepsilon}{M+N} \quad \text{et} \quad \int_{a}^{b} (G_{\varepsilon} - g_{\varepsilon})(x) \, dx \le \frac{\varepsilon}{M+N} \, .$$

Posons

$$\phi_{\varepsilon} = \sup(0, f_{\varepsilon}) \quad , \quad \psi_{\varepsilon} = \sup(0, g_{\varepsilon}) \quad , \quad \Phi_{\varepsilon} = \inf(M, F_{\varepsilon}) \quad , \quad \Psi_{\varepsilon} = \inf(N, G_{\varepsilon}) \, .$$

Ce sont des fonctions en escalier et l'on a encore

$$0 \le \phi_{\varepsilon} \le f \le \Phi_{\varepsilon} \le M \quad \text{et} \quad 0 \le \psi_{\varepsilon} \le g \le \Psi_{\varepsilon} \le N \,.$$

Par ailleurs

$$\Phi_{\varepsilon}(x) - \phi_{\varepsilon}(x) \le F_{\varepsilon}(x) - f_{\varepsilon}(x)$$
 et $\Psi_{\varepsilon}(x) - \psi_{\varepsilon}(x) \le F_{\varepsilon}(x) - f_{\varepsilon}(x)$,

donc on a aussi

$$\int_{a}^{b} (\Phi_{\varepsilon} - \phi_{\varepsilon})(x) dx \le \frac{\varepsilon}{M+N} \quad \text{et} \quad \int_{a}^{b} (\Psi_{\varepsilon} - \psi_{\varepsilon})(x) dx \le \frac{\varepsilon}{M+N}.$$

Les fonctions $\phi_{\varepsilon}\psi_{\varepsilon}$ et $\Phi_{\varepsilon}\Psi_{\varepsilon}$ sont en escalier, et l'on a l'encadrement

$$0 \le \phi_{\varepsilon} \psi_{\varepsilon} \le fg \le \Phi_{\varepsilon} \Psi_{\varepsilon}$$
.

Alors,

$$\Phi_{\varepsilon}\Psi_{\varepsilon} - \phi_{\varepsilon}\psi_{\varepsilon} = \Phi_{\varepsilon}(\Psi_{\varepsilon} - \psi_{\varepsilon}) + \psi_{\varepsilon}(\Phi_{\varepsilon} - \phi_{\varepsilon}),$$

et donc

$$0 \le \Phi_{\varepsilon} \Psi_{\varepsilon} - \phi_{\varepsilon} \psi_{\varepsilon} \le M(\Psi_{\varepsilon} - \psi_{\varepsilon}) + N(\Phi_{\varepsilon} - \phi_{\varepsilon}).$$

Finalement

$$\int_{a}^{b} (\Phi_{\varepsilon} \Psi_{\varepsilon} - \phi_{\varepsilon} \psi_{\varepsilon})(x) dx \le M \int_{a}^{b} (\Psi_{\varepsilon} - \psi_{\varepsilon})(x) dx + N \int_{a}^{b} (\Phi_{\varepsilon} - \phi_{\varepsilon})(x) dx,$$

ce qui donne enfin

$$\int_{a}^{b} (\Phi_{\varepsilon} \Psi_{\varepsilon} - \phi_{\varepsilon} \psi_{\varepsilon})(x) dx \le M \frac{\varepsilon}{M+N} + N \frac{\varepsilon}{M+N} = \varepsilon.$$

Cela montre que fg est Riemann-intégrable.

Si maintenant f et g sont quelconques, on écrit

$$f = f_{+} - f_{-}$$
 et $g = g_{+} - g_{-}$

où les notations sont celles de l'exercice 2. Les fonctions f_+ , f_- , g_+ , g_- sont positives et Riemann-intégrables. Alors

$$fg = f_+g_+ + f_-g_- - f_+g_- - f_-g_+$$

est une combinaison linéaire de fonctions Riemann-intégrables donc l'est également.

10. Sur]0, 1] la fonction qui à x associe E(1/x) possède des discontinuités uniquement aux points 1/n où n est un entier non nul. Par ailleurs, on a toujours $-1 \le f(x) \le 1$.

Pour tout entier n > 0 notons f_n et F_n les fonctions définies sur [0, 1] par

$$f_n(x) = \begin{cases} -1 & \text{si } 0 \le x < 1/n \\ f(x) & \text{si } 1/n \le x \le 1 \end{cases} \quad \text{et} \quad F_n(x) = \begin{cases} 1 & \text{si } 0 \le x < 1/n \\ f(x) & \text{si } 1/n \le x \le 1 \end{cases}$$

Ce sont des fonctions en escalier et $f_n \leq f \leq F_n$. Par ailleurs la fonction $F_n - f_n$ vaut 2 sur [0, 1/n] et 0 sur [1/n, 1], donc

$$\int_{0}^{1} (F_n(x) - f_n(x)) dx = \frac{2}{n}.$$

Alors, dès que $n \geq 2/\varepsilon$, on a

$$\int_{0}^{1} (F_n(x) - f_n(x)) dx \le \varepsilon,$$

et ceci montre que f est Riemann-intégrable. De plus

$$\int_{0}^{1} f_{n}(x) dx \le \int_{0}^{1} f(x) dx \le \int_{0}^{1} F_{n}(x) dx.$$

Remarquons que E(1/x) = k si et seulement si $k \le 1/x < k+1$, c'est-à-dire

$$\frac{1}{k+1} < x \le \frac{1}{k} \,.$$

Âćela permet de calculer l'intégrale I_n suivante :

$$I_n = \int_{1/n}^{1} f(x) dx = \sum_{k=1}^{n-1} \int_{1/(k+1)}^{1/k} f(x) dx = \sum_{k=1}^{n-1} (-1)^k \left(\frac{1}{k} - \frac{1}{k+1} \right).$$

Transformons cette somme

$$I_n = \sum_{k=1}^{n-1} \left(\frac{(-1)^k}{k} + \frac{(-1)^{k+1}}{k+1} \right)$$

$$= \sum_{k=1}^{n-1} \frac{(-1)^k}{k} + \sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k+1}$$

$$= \sum_{k=1}^{n-1} \frac{(-1)^k}{k} + \sum_{k=2}^n \frac{(-1)^k}{k}$$

$$= 2\sum_{k=1}^n \frac{(-1)^k}{k} + 1 - \frac{(-1)^n}{n}.$$

On a donc

$$I_n = -2\sum_{k=1}^n \frac{(-1)^{k+1}}{k} + 1 + \frac{(-1)^{n+1}}{n},$$

et la suite (I_n) converge vers $-2 \ln 2 + 1$. Alors

$$\int_{0}^{1} f_{n}(x) dx = I_{n} - \frac{1}{n} \quad \text{et} \quad \int_{0}^{1} F_{n}(x) dx = I_{n} + \frac{1}{n},$$

et ces deux expressions ont pour limite $-2 \ln 2 + 1$. De plus

$$0 \le \int_{0}^{1} (f(x) - f_n(x)) dx \le \int_{0}^{1} (F_n(x) - f_n(x)) dx = \frac{2}{n}.$$

Il résulte alors du théorème d'encadrement que

$$\lim_{n \to +\infty} \int_{0}^{1} (f(x) - f_n(x)) dx = 0,$$

d'où l'on déduit que

$$\int_{0}^{1} f(x) dx = \lim_{n \to +\infty} \int_{0}^{1} f_n(x) dx = -2 \ln 2 + 1.$$

11. La fonction f est décroissante positive. En appliquant la deuxième formule de la moyenne à l'intégrale $\int_{n}^{n^2} f(t) \cos t \, dt$, il existe c dans $[n, n^2]$ tel que

$$\int_{n}^{n^2} f(t) \cos t \, dt = f(n_+) \int_{n}^{c} \cos t \, dt.$$

Mais

$$\left| \int_{n}^{c} \cos t \, dt \right| = \left| \sin c - \sin n \right| \le 2,$$

donc

$$\left| \int_{n}^{n^2} f(t) \cos t \, dt \right| \le 2f(n_+).$$

Par un raisonnement analogue,

$$\left| \int_{n}^{n^2} f(t) \sin t \, dt \right| \le 2f(n_+),$$

d'où

$$\left| \int_{n}^{n^{2}} f(t)e^{it} dt \right| = \left(\left(\int_{n}^{n^{2}} f(t)\cos t \, dt \right)^{2} + \left(\int_{n}^{n^{2}} f(t)\sin t \, dt \right)^{2} \right)^{1/2} \le 2\sqrt{2}f(n_{+}).$$

Il ne reste plus qu'à montrer que la suite $(f(n_+))$ converge vers zéro. Soit $\varepsilon > 0$. Puisque f tend vers 0 à l'infini, il existe N tel que $x \ge N$ implique $0 \le f(x) < \varepsilon$. Alors, si $n \ge N$, on a par passage à la limite dans les inégalités

$$0 \le \lim_{x \to n_+} f(x) = f(n_+) \le \varepsilon$$

ce qui montre que la suite $(f(n_+))$ converge vers zéro. Il en résulte alors que

$$\lim_{n \to +\infty} \int_{n}^{n^{2}} f(t)e^{it} dt = 0.$$

12. Remarquons tout d'abord que le produit de deux fonctions Riemann-intégrables l'est encore (ex 9), et donc que l'intégrale $I(\lambda)$ existe bien. On suppose $\lambda > 0$.

a) Si f vaut une constante μ sur un intervalle de bornes α et β et nulle ailleurs, on a

$$I(\lambda) = \int_{\alpha}^{\beta} \mu e^{i\lambda x} dx = \frac{\mu}{i\lambda} (e^{i\lambda\beta} - e^{i\lambda\alpha}).$$

Alors

$$|I(\lambda)| \le \frac{2|\mu|}{\lambda},$$

et il en résulte que $\lim_{\lambda \to +\infty} I(\lambda) = 0$.

Si f est en escalier, elle est combinaison linéaire de fonctions du type précédent, et le résultat est encore vrai.

b) Soit $\varepsilon > 0$. La fonction f étant Riemann-intégrable, il existe deux fonctions en escalier f_{ε} et F_{ε} telles que $f_{\varepsilon} \leq f \leq F_{\varepsilon}$, et

$$\int_{a}^{b} (F_{\varepsilon} - f_{\varepsilon})(x) \, dx \le \frac{\varepsilon}{2} \, .$$

On a alors

$$\left| \int_{a}^{b} F_{\varepsilon}(x)e^{i\lambda x} dx - \int_{a}^{b} f(x)e^{i\lambda x} dx \right| \leq \int_{a}^{b} (F_{\varepsilon}(x) - f(x)) dx \leq \int_{a}^{b} (F_{\varepsilon}(x) - f_{\varepsilon}(x)) dx \leq \frac{\varepsilon}{2}.$$

La fonction F_{ε} est en escalier, donc, il existe Λ réel, tel que, si $\lambda > \Lambda$,

$$\left| \int_{a}^{b} F_{\varepsilon}(x) e^{i\lambda x} \, dx \right| < \frac{\varepsilon}{2} \, .$$

Alors, sous ces conditions,

$$\left| \int_{a}^{b} f(x)e^{i\lambda x} dx \right| \leq \left| \int_{a}^{b} F_{\varepsilon}(x)e^{i\lambda x} dx \right| + \left| \int_{a}^{b} F_{\varepsilon}(x)e^{i\lambda x} dx - \int_{a}^{b} f(x)e^{i\lambda x} dx \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

ce qui montre que

$$\lim_{\lambda \to +\infty} I(\lambda) = 0$$

c) Il résulte de la deuxième formule de la moyenne appliquée à la partie réelle de $I(\lambda)$ qu'il existe c tel que

$$\int_{a}^{b} f(x) \cos \lambda x \, dx = f(a_{+}) \int_{a}^{c} \cos \lambda x \, dx = f(a_{+}) \frac{1}{\lambda} (\sin \lambda c - \sin \lambda a) \,.$$

ce qui donne la majoration

$$\left| \int_{a}^{b} f(x) \cos \lambda x \, dx \right| \le \frac{2}{\lambda} f(a_{+}).$$

De même

$$\left| \int_{a}^{b} f(x) \sin \lambda x \, dx \right| \leq \frac{2}{\lambda} f(a_{+}),$$

donc

$$|I(\lambda)| \le \frac{2\sqrt{2}}{\lambda} f(a_+).$$

Il en résulte que $\lambda I(\lambda)$ est bornée.

d) En intégrant par parties

$$I(\lambda) = \left[f(x) \frac{1}{i\lambda} e^{i\lambda x} \right]_a^b - \int_a^b f'(x) \frac{1}{i\lambda} e^{i\lambda x} dx.$$

Tout d'abord

$$\left| \frac{1}{i\lambda} (f(b)e^{i\lambda b} - f(a)e^{i\lambda a}) \right| \le \frac{1}{\lambda} (|f(b)| + |f(a)|).$$

D'autre part,

$$\left| \int_{a}^{b} f'(x)e^{i\lambda x} dx \right| \leq \int_{a}^{b} |f'(x)| dx.$$

Alors

$$|I(\lambda)| \le \frac{1}{\lambda} \left(|f(b)| + |f(a)| + \int_a^b |f'(x)| \, dx \right).$$

Il en résulte de nouveau que $\lambda I(\lambda)$ est bornée.

13. Si la fonction f vaut λ_k sur $]x_{k-1}, x_k[$, pour $1 \le k \le n$, alors |f| vaut $|\lambda_k|$ sur $]x_{k-1}, x_k[$, pour $1 \le k \le n$, donc

$$\left| \int_{a}^{b} f(x) dx \right| = \left| \sum_{k=1}^{n} \lambda_{k} (x_{k} - x_{k-1}) \right| \quad \text{et} \quad \int_{a}^{b} |f(x)| dx = \sum_{k=1}^{n} |\lambda_{k}| (x_{k} - x_{k-1}),$$

et il résulte de l'inégalité triangulaire que

$$\left| \sum_{k=1}^{n} \lambda_k (x_k - x_{k-1}) \right| \le \sum_{k=1}^{n} |\lambda_k| (x_k - x_{k-1}).$$

La formule (1) est donc vraie pour des fonctions en escalier.

Si maintenant f est une fonction quelconque, posons $x_k = a + k(b-a)/n$, et soit f_n la fonction en escalier qui vaut $f(x_k)$ sur $]x_{k-1}, x_k[$. On a

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) = \lim_{n \to +\infty} \int_{a}^{b} f_n(x) dx,$$

et aussi

$$\int_{a}^{b} |f(x)| dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} \left| f\left(a + k \frac{b-a}{n}\right) \right| = \lim_{n \to +\infty} \int_{a}^{b} |f_n(x)| dx.$$

Or, on sait que, pour la fonction en escalier f_n , on a

$$\left| \int_{a}^{b} f_n(x) dx \right| \leq \int_{a}^{b} |f_n(x)| dx,$$

alors par passage à la limite dans les inégalités, on obtient

$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx \, .$$