Le produit scalaire

Le produit scalaire de deux vecteurs est un nombre réel que l'on peut calculer de diverses façons. C'est cette diversité qui en fait un outil puissant.

A Expressions du produit scalaire

1. Définition

Soient \vec{u} et \vec{v} deux vecteurs. Le produit scalaire des vecteurs \vec{u} et \vec{v} est le nombre réel $\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{v} - \vec{u}\|^2)$

Conséquences

- Si A, B et C sont trois points tels que $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$, on a $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = \overrightarrow{v} \overrightarrow{u}$, d'où l'égalité $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} (AB^2 + AC^2 BC^2)$.
- $\vec{u} \cdot \vec{u} = \vec{u}^2 = ||\vec{u}||^2$; \vec{u}^2 est appelé carré scalaire de \vec{u} .
- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $\vec{0} \cdot \vec{u} = 0$

2. Avec des coordonnées

Dans le plan muni d'un repère orthonormal (O, \vec{i}, \vec{j}) , on considère les vecteurs $\vec{u}(x, y)$ et $\vec{v}(x', y')$. On a alors $\vec{u} \cdot \vec{v} = xx' + yy'$.

Démonstration

Il suffit d'appliquer la formule $\|\vec{u}\| = \sqrt{x^2 + y^2}$ pour un vecteur $\vec{u}(x, y)$.

3. Formule du cosinus

Soient \vec{u} et \vec{v} deux vecteurs non nuls. On a $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos(\vec{u}, \vec{v})$.

Démonstration

On considère un repère orthonormal direct (O, \vec{i}, \vec{j}) et les points A et B tels que $\overrightarrow{OA} = \vec{u} = ||\vec{u}||\vec{i}$ et $\overrightarrow{OB} = \vec{v}$. Les coordonnées polaires de B sont $(||\vec{v}||, (\vec{u}, \vec{v}))$. On a donc : $x_{\vec{u}} = ||\vec{u}||$, $y_{\vec{u}} = 0$, $x_{\vec{v}} = ||\vec{v}||\cos(\vec{u}, \vec{v})$ et $y_{\vec{v}} = ||\vec{v}||\sin(\vec{u}, \vec{v})$ et on en déduit que $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(\vec{u}, \vec{v})$.

Conséquence

Si \overrightarrow{A} , \overrightarrow{B} et C sont trois points distincts, $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \cdot AC \cdot \cos(\widehat{BAC})$.

B Propriétés du produit scalaire

1. Règles de calcul

Quels que soient les vecteurs \vec{u} , \vec{v} , \vec{w} et les réels a et b:

- 1. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- 2. $(a\vec{u})\cdot(b\vec{v})=ab(\vec{u}\cdot\vec{v})$

Démonstration

Utiliser la formule du produit scalaire utilisant des coordonnées.

2. Vecteurs colinéaires

- Si \vec{u} et \vec{v} sont colinéaires de même sens, alors $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}||$
- Si \vec{u} et \vec{v} sont colinéaires de sens opposés, alors $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \cdot \|\vec{v}\|$

Démonstration

- Si \vec{u} et \vec{v} sont colinéaires de même sens, $(\vec{u}, \vec{v}) = 0$, donc $\cos(\vec{u}, \vec{v}) = 1$ et $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}||$
- Si \vec{u} et \vec{v} sont colinéaires de sens opposés, $(\vec{u}, \vec{v}) = \pi$, donc $\cos(\vec{u}, \vec{v}) = -1$ et $\vec{u} \cdot \vec{v} = -||\vec{u}|| \cdot ||\vec{v}||$

3. Vecteurs orthogonaux

Considérons deux vecteurs \vec{u} et \vec{v} tels que $\vec{u} \cdot \vec{v} = 0$.

On a alors $\|\vec{u}\| \|\vec{v}\| \cos(\vec{u}, \vec{v}) = 0$ et donc 3 possibilités :

- 1. $\|\vec{u}\| = 0$, c'est à dire $\vec{u} = \vec{0}$
- 2. $\|\vec{v}\|=0$, c'est à dire $\vec{v}=\vec{0}$
- 3. $\cos(\vec{u}, \vec{v}) = 0$, c'est à dire que $(\vec{u}, \vec{v}) = \frac{\pi}{2}$ ou $(\vec{u}, \vec{v}) = \frac{-\pi}{2}$.

On dit que deux vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si leur produit scalaire $\vec{u} \cdot \vec{v}$ est nul.

Le vecteur nul est donc orthogonal à tout vecteur.

Application

Dire que deux droites (AB) et (CD) sont perpendiculaires équivaut à dire que $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$.

4. Utiliser une projection orthogonale

On considère trois points A, B et C. On appelle H la projection orthogonale de C sur la droite (AB). On a alors : $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$.

Démonstration

On a: $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot (\overrightarrow{AH} + \overrightarrow{HC}) = \overrightarrow{AB} \cdot \overrightarrow{AH} + \overrightarrow{AB} \cdot \overrightarrow{HC}$. Or les vecteurs \overrightarrow{AB} et \overrightarrow{HC} sont orthogonaux, donc $\overrightarrow{AB} \cdot \overrightarrow{HC} = 0$, ce qui donne $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$.