Formulaire de Probabilité

On considère une variable aléatoire réelle X sur un espace probabilisé (Ω, \mathcal{A}, P) .

	CAS DISCRET	CAS CONTINU
Caractérisation de la loi de X	Distribution de probabilités $P(X=x),\ x\in X(\Omega)$	Densité de probabilités $f(x),\ x\in I\!\!R$
Fonction de répartition F_X de X $\forall x \in I\!\!R, F_X(x) = P(X \leq x)$	$F_X(x) = \sum_{\substack{u \in X(\Omega) \\ u \le x}} P(X = u)$	$F_X(x) = \int_{-\infty}^x f(u)du$
E(X) : Espérance mathématique de X	$\sum_{x \in X(\Omega)} x P(X = x)$	$\int_{-\infty}^{+\infty} x f(x) dx$
V(X) : Variance de X	$\sum_{x \in X(\Omega)} (x - E(X))^2 P(X = x)$	$\int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx$
$E(\psi(X))$: Espérance d'une fonction connue ψ de X	$\sum_{x \in X(\Omega)} \psi(x) P(X = x)$	$\int_{-\infty}^{+\infty} \psi(x) f(x) dx$
$m_k(X)$: Moment d'ordre k de X	$\sum_{x \in X(\Omega)} x^k P(X = x)$	$\int_{-\infty}^{+\infty} x^k f(x) dx$
$\mu_k(X)$: Moment centré d'ordre k de X	$\sum_{x \in X(\Omega)} (x - E(X))^k P(X = x)$	$\int_{-\infty}^{+\infty} (x - E(X))^k f(x) dx$
$\sigma(X)$: écart-type de X	$\sqrt{V(X)}$	$\sqrt{V(X)}$

Théorème de Koenig-Huyghens:

$$\forall a \in \mathbb{R}, \quad E((X-a)^2) = V(X) + (E(X) - a)^2$$

On notera aussi que $V(X) = E(X^2) - E^2(X)$.

Probabilité conditionnelle

Soit B un événement de probabilité non nulle, soit A un événement quelconque. La probabilité de A sachant (ou conditionnellement à) B est notée $P(A \mid B)$ ou P(A/B). Elle vérifie :

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Formule des probabilités totales

Soit $(A_i)_{i\in I}$ un système complet d'événements c'est-à-dire une partition de Ω . Pour tout événement B, on a

$$P(B) = \sum_{i \in I} P(B \cap A_i) = \sum_{i \in I} P(B \mid A_i) P(A_i).$$

Formule de Bayes ou probabilité des causes

Soit $(A_i)_{i\in I}$ un système complet d'événements, et B un événement de probabilité non nulle. Alors :

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{\sum_{i \in I} P(B \mid A_i)P(A_i)}.$$

Formule des probabilités composées

Soient n événements A_1, \dots, A_n tels que $P(A_1 \cap \dots \cap A_n) \neq 0$. Alors :

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2)...P(A_n \mid A_1 \cap \cdots \cap A_{n-1}).$$

FORMULES POUR n TIRAGES DANS UNE URNE à N BOULES

	Tirages avec remise	Tirages sans remise
Urne à 2 catégories $N_1 = Np \text{ est le nombre}$ de boules de catégorie 1	Formule binomiale $C_n^k p^k (1-p)^{n-k}$	Formule hypergéométrique $\frac{C_{N_1}^k \times C_{N-N_1}^{n-k}}{C_N^n}$
Urne à K catégories	Formule multinomiale	Formule polyhypergéométrique
$N_i = Np_i$ est le nombre de boules de catégorie i	$\frac{n!}{n_1!\dots n_K!} \prod_{i=1}^K p_i^{n_i}$	$\frac{\prod_{i=1} C_{N_i}^{n_i}}{C_N^n}$

LOIS DE PROBABILITES DISCRETES CLASSIQUES

Dénomination	Loi de probabilité	Espérance	Variance	$X(\Omega)$
Loi Uniforme	$P_x = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2 - 1}{12}$	$\llbracket 1, n rbracket$
Loi de Bernoulli $\mathcal{B}(1,p)$ $p \in]0,1[$	$P_0 = 1 - p \text{ et } P_1 = p$	p	p(1 - p)	{0,1}
Loi Binomiale $\mathcal{B}(n,p)$ $n \in I\!\!N^*, p \in]0,1[$	$P_x = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$	np	np(1-p)	$\llbracket 0,n rbracket$
Loi Hypergéométrique $\mathcal{H}(N,n,p)$ $(N,n,p)\in (I\!\!N^*)^2\times]0,1[$	$P_x = \frac{C_{Np}^x C_{N(1-p)}^{n-x}}{C_N^n}$	np	$np(1-p)\frac{N-n}{N-1}$	$\subset \llbracket 0,n rbracket$
Loi de Poisson $\mathcal{P}(\lambda)$ $\lambda \in I\!\!R_+^*$	$P_x = \frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$I\!\!N$
Loi Géométrique $\mathcal{G}(p)$ $p \in]0,1[$	$P_x = (1-p)p^{x-1}$	$\frac{1}{1-p}$	$\frac{p}{(1-p)^2}$	IN*
Loi de Pascal $\mathcal{P}a(k,p)$ $k \in \mathbb{N}^*, p \in]0,1[$	$P_x = C_{x-1}^{k-1} (1-p)^k p^{x-k}$	$\frac{k}{1-p}$	$\frac{kp}{(1-p)^2}$	$\llbracket k, +\infty \llbracket$
Loi Binomiale $\label{eq:binomial} \begin{aligned} &\text{N\'egative } \mathcal{BN}(k,p) \\ &k \in I\!\!N^*, p \in]0,1[\end{aligned}$	$P_x = C_{x+k-1}^x (1-p)^k p^x$	$\frac{kp}{1-p}$	$\frac{kp}{(1-p)^2}$	IN

LOIS DE PROBABILITES CONTINUES CLASSIQUES

Dénomination	Loi de probabilité	Espérance	Variance	$X(\Omega)$
Loi Uniforme Continue $\mathcal{U}[a,b]$ $(a,b) \in \mathbb{R}^2, \ a < b$	$\frac{1}{b-a} \mathbb{I}_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	[a,b]
Loi Normale $\mathcal{N}(\mu, \sigma)$ $\mu \in I\!\!R, \sigma \in I\!\!R_+^*$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	μ	σ^2	IR
Loi Exponentielle $\mathcal{E}(\lambda)$ $\lambda \in I\!\!R_+^*$	$\lambda \exp(-\lambda x) \mathbb{I}_{\mathbf{R}_+^*}(x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$[0,+\infty[$
Loi Log-Normale $\mathcal{LN}(\mu, \sigma)$ $\mu \in I\!\!R, \sigma \in I\!\!R_+^*$	$\frac{1_{\mathbf{R}_{+}^{*}}(x)}{\sigma x \sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^{2}}{2\sigma^{2}}\right)$	$e^{\mu + \frac{\sigma^2}{2}}$	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$	$]0,+\infty[$
Gamma $\gamma(a, \lambda)$ $a \in \mathbb{R}_+^*, \lambda \in \mathbb{R}_+^*$	$\frac{\lambda^a x^{a-1}}{\Gamma(a)} e^{-\lambda x} \mathbf{I}_{\mathbf{R}_+^*}(x)$	$\frac{a}{\lambda}$	$\frac{a}{\lambda^2}$	$]0,+\infty[$
Khi-deux $\chi^2(n)$	$\frac{x^{\frac{n}{2}-1}}{\Gamma(\frac{n}{2})2^{\frac{n}{2}}}e^{-\frac{x}{2}}1_{\mathbf{R}_{+}^{*}}(x)$	n	2n	$]0,+\infty[$
$n \in \mathbb{N}^*, \ (\chi^2(n) = \gamma(\frac{n}{2}, \frac{1}{2}))$	$r^2 - \frac{n+1}{r}$			
Student $\mathcal{T}(n)$ $n \in I\!N^*$	$\frac{\Gamma(\frac{n+1}{2})(1+\frac{x^2}{n})^{-\frac{n+1}{2}}}{\Gamma(\frac{n}{2})\sqrt{n\pi}}$	0 si $n > 1$	$\frac{n}{n-2}$ si $n > 2$	$I\!\!R$
Fisher-Snédécor $\mathcal{F}(m,n)$ $m \in \mathbb{N}^*, n \in \mathbb{N}^*$	$\frac{n^{\frac{n}{2}}m^{\frac{m}{2}}x^{\frac{n}{2}-1}1_{\mathbf{R}_{+}^{*}}(x)}{B(\frac{n}{2},\frac{m}{2})(m+nx)^{\frac{m+n}{2}}}$	$\frac{n}{n-2}$ si $n > 2$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$ si $n > 4$	$]0,+\infty[$
Cauchy $\mathcal{C}(a)$ $a \in I\!\!R_+^*$	$\frac{a}{\pi(a^2+x^2)}$	pas définie	pas définie	$I\!\!R$