Turbomachine : cours et exercices corrigés PDF
On appelle turbomachine toute machine dans laquelle un fluide échange de l’énergie avec un ensemble mécanique de révolution tournant autour de son axe de symétrie (une ou plusieurs roues ou rotors munis des aubes ou des augets).
Dans les turbomachines le transfert d’énergie s’effectue entre le fluide et une roue mobile. La théorie du fonctionnement est la même quelque soit le sens du transfert, mais on distingue :
Suivant la manière dont le fluide traverse la roue mobile, on dit que, dans la traversée d’une machine, on a :
Là où la vitesse du fluide n’a en plus de sa composante circonférentielle, qu’une composante axiale; chaque ligne de courant se trouve sur la surface d’un cylindre circulaire coaxial à la machine. Une machine est dite axiale si le courant y est sensiblement axial, du moins dans la région où la majeure partie du travail est effectuée. Citons les pompes et les ventilateurs hélicoïdes, des turbines à hélices et les turbines Kaplan.
Là où la vitesse n’a, en plus de sa composante circonférentielle, qu’une composante radiale ; chaque ligne de courant se trouve dans un plan perpendiculaire à l’axe de la roue (Les particules fluides se déplacent dans des plans normaux à l’axe de la roue). Une machine est dite radiale si le courant y est à peu près radial.
Dans ce cas on qualifie de :
Quand le courant possède trois composantes : circonférentielle, axial et radial à l’une des extrémités. Les particules fluides se déplacent sur des surfaces de révolution coaxiales à l’axe de la roue (des cônes de révolution par exemple).
Les particules fluides se déplacent dans des plans parallèles à l’axe de la roue. Par exemple, pour les turbines hydrauliques Pelton, on fait agir sur la roue un ou plusieurs jets qui arrivent sue les augets avec une vitesse possédant seulement une composante circonférentielle.
Une turbomachine est composée essentiellement d’un mobile de révolution tournant dans un stator limitée par une enveloppe étanche. Suivant que ce mobile comporte un ou plusieurs rotors, la machine est dite monocellulaire ou multicellulaire. Une machine monocellulaire complète se compose des trois organes distincts que le fluide traverse successivement, soit, depuis l’entrée jusqu’à la sortie, le distributeur, le rotor comportant une roue et le diffuseur. Le distributeur et le diffuseur font partie de stator de la machine.
cet organe fixe a pour rôle de conduire le fluide depuis la section d’entrée de la machine jusqu’à l’entrée du rotor.
C’est l’organe essentiel de la turbomachine, il comporte des aubages où s’opèrent les échanges entre énergie mécanique et énergie du fluide. La forme géométrique de la roue qui impose l’allure générale de la trajectoire des particules fluide à travers de cet organe, constitue une base de classification. Elle varie suivant les divers paramètres de fonctionnement (hauteur produite, débit et vitesse de rotation) résumés par un seul paramètre ou nombre de Brauer, Ns, défini plus loin. On notera une évolution progressive depuis les plus faibles valeurs pratiques du paramètre Ns (25) jusqu’aux plus élevées (285). Aux valeurs faibles et moyennes correspondent des roues à écoulements centrifuges, aux plus élevées des pompes hélices.
c’est l’organe qui est destiné à transformer en pression l’énergie cinétique résiduelle de l’eau, tout en évacuant celle-ci. On trouve deux types de diffuseurs :
Les équations utilisées sont celles de la mécanique des fluides classique sous forme intégrale. Les écoulements ne sont pas permanents, puisque du rotor sont mobiles. Cependant si la machine est en fonctionnement constant, l’écoulement absolu pourra être supposé permanent en moyenne. On définit alors :
La dérivée par rapport au temps de l’énergie cinétique est égale à la puissance fournie par les efforts intérieurs et extérieurs :
\frac{dEc}{dt}=P_{int}+P_{ext}
Le théorème du moment cinétique s’exprime par :
La charge relative est définie par :
H_{r}=\frac{p}{\rho g}+z+\frac{W^{2}+U^{2}}{2g}
Pour plus de détails télécharger les documents ci-dessous:
Cours sur la Turbomachine N°1
Cours sur la Turbomachine N°2
Cours sur la Turbomachine N°3
Cours sur la Turbomachine N°4
Cours sur la Turbomachine N°5
Exercices corrigés sur la Turbomachine
Cours et exercices sans corrigés sur la Turbomachine
View Comments
It exclusively your opinion